利用点绘制方法采用不规则分布的点云来表征物体表面的特点,提出一种基于点绘制技术和非均匀有理B样条曲面拟合技术的低压电器开关电弧动态几何模型仿真方法,讨论了低压电器分断过程的仿真方法,电弧在灭弧室中的运动被清晰地从多个角度进行观察。动态电弧模型有利于分析电弧的燃弧过程,改进低压电器产品的性能。
2025-09-06 09:28:11 135KB 开关电弧 曲面拟合
1
基于FPGA技术的AMI编码器与译码器设计:交替信号的编解码原理与实现细节,基于FPGA的AMI编解码器设计:详细阐述编码原理与实现流程,附设计文档、仿真说明及注释代码,基于FPGA的AMI编码器和译码器设计: AMI编码:将传输中的0仍用0表示,将传输中的1依次由“+1”和“-1”交替表示。 AMI解码+编码的逆过程,回复原始编码。 包含详细的设计文档、仿真说明,代码里有详细的说明注释,保证可以理解设计原理和设计思路,理解AMI的编解码实质。 ,基于FPGA的AMI编码器设计; AMI解码器设计; 交替码; 编解码实质; 详细设计文档; 仿真说明; 注释说明。,基于FPGA的AMI编解码器设计:详解交替信号传输与复原原理
2025-09-05 23:02:55 371KB edge
1
汽车电瓶充电器电路图详解 汽车电瓶充电器是现代汽车不可或缺的组件之一,其充电技术的发展对汽车电瓶的使用寿命和性能产生了直接的影响。然而,现有的汽车电瓶充电器电路图在设计和制作中存在着很多不足之处,例如充电方式不合理、电池过早报废等问题。 本文将详细介绍一款二阶段恒流限压式铅酸电池充电器的电路图设计和工作原理,并对其充电过程进行了详细的分析。 充电过程分析 1. 维护充电 在电池电压较低时(可设定,本电路预设在9V以下),充电器工作在小电流维护充电状态下。工作原理为U1C⑨脚(同相端)电位低于⑧脚(反相端),U1C输出低电位,T4截止。U1D 11 脚电位约0.18V。此时充电电流约250mA(恒流电路由R14,U1D,T1B周边外围电路构成,恒流原理读者请自行分析)。 2. 快速充电 随着维护充电继续,电池电压逐渐升高,当电池电压超过9V时,充电器转入大电流快充模式下,U1C⑨脚(同相端)电位高于⑧脚(反相端),U1C输出高电位,T4导通,U1D 11 脚电位约为0.48V,充电器恒定输出约1A电流给电池充电。 3. 限压浮充 当电池接近充足电时,充电器自动转入限压浮充状态下(限压浮充电压设定为13.8V,如为6V蓄电池,则浮充电压应设定为6.9V),此时的充电电流会由快速充电状态下逐渐下降,至电池完全充足电后,充电电流仅为10~30mA,用以补充电池因自放电而损失的电量。 4. 保护及充电指示电路 本电路设有反极性保护电路,由D4,U1C,U1D,T1及外围元件构成,当电池反接时,充电器限制输出电流不致发生事故。充电指示由U1A,D7及外围元件构成,充电时,D7点亮,充电器进入浮充状态后,D7熄灭,表示充电结束。 充电器设计考虑 在设计汽车电瓶充电器电路图时,需要考虑多个因素,如电池类型、充电电流、浮充电压等。同时,为了满足不同规格电池的需要,本电路略为修改电路参数即可任意调整充电电流,浮充电压。 结论 本文详细介绍了二阶段恒流限压式铅酸电池充电器的电路图设计和工作原理,并对其充电过程进行了详细的分析。该电路图设计可以满足不同规格电池的需要,具有广泛的应用前景。
2025-09-05 22:55:47 173KB 12v汽车电瓶 技术应用
1
模型参考自适应PMSM参数辨识仿真模型 ①具有电阻识别、磁链识别、电感识别,且精度分别位0.5%、1.4%、13.7% ②参考文献:附带搭建仿真过程的参考文献,如图9所示 ③模型参考自适应技术文档:PMSM模型参考自适应方法详细推导及理论说明 自适应参数调整,可提高一定的识别精度,可作为基础模型在其基础上改进 模型参考自适应技术在永磁同步电机(PMSM)参数辨识中的应用是一个高度专业化的研究领域,它涉及到电机控制、系统建模、信号处理和自适应控制等多方面的知识。在这一领域中,模型参考自适应方法被用于提高电机参数辨识的准确性,这对于电机的设计、运行以及优化控制策略至关重要。 电阻、磁链和电感是PMSM电机中三个基本的参数。电阻识别的精度达到了0.5%,磁链识别精度为1.4%,电感识别精度为13.7%,这些高精度的识别对于确保电机运行效率和可靠性是必不可少的。在电机控制系统中,这些参数的精确测量有助于更好地理解电机的实际运行状态,从而实现更为精确的控制。 模型参考自适应方法结合了理论研究与实际应用的需要。通过建立参考模型,研究人员能够对PMSM进行参数辨识和仿真分析。参考文献通常提供了详细的仿真搭建过程,帮助研究者理解模型的搭建方法和理论推导。如图9所示,这些参考文献不仅提供了理论支撑,还可能包含了一些关键的算法实现和仿真实验结果,为后续研究和应用提供参考。 在技术文档中,模型参考自适应技术被深入地探讨和推导,详细地说明了自适应参数调整的理论基础及其在电机参数辨识中的应用。自适应控制策略能够在电机运行过程中动态地调整控制参数,以适应电机参数的变化,从而提高控制性能。这种技术可以在不同的工作条件下保持较高的辨识精度,对于复杂和变化的电机工作环境尤为重要。 此外,从文件名称列表中可以看出,相关的研究内容被组织成不同格式的文件,如文档、网页和图片。这些文件覆盖了从基础概念到深入分析的各个层面,有助于读者从不同角度理解和掌握模型参考自适应技术在PMSM参数辨识中的应用。 在实际应用中,模型参考自适应参数辨识技术可以通过数字校准和优化控制策略来提高电机系统的性能。在设计阶段,这些技术可以帮助工程师更精确地模拟电机的工作状态,预测其性能表现。在运行阶段,它们则可以帮助实时地调整控制参数,以适应电机运行条件的变化,从而确保系统的稳定性和高效能。 模型参考自适应技术在PMSM参数辨识中的应用是一个复杂的工程问题,它需要跨学科的知识和深入的研究。通过不断提高参数辨识的精度,可以使电机系统更加智能化和高效化,对工业应用产生重大的影响。
2025-09-05 21:32:08 880KB
1
如何使用Jmag进行电机电磁振动噪音的联合仿真及偶合计算。内容涵盖了一个1个半小时的详细教学视频、72页的操作教程和多个仿真实例。首先,教学视频分为四个部分:Jmag软件的基础介绍、电机模型的建立与参数设置、电磁振动噪音的仿真分析以及偶合计算的具体案例。其次,操作教程提供了从软件界面到具体仿真步骤的详尽指导,确保用户能够快速上手并熟练掌握各项功能。最后,通过具体的仿真实例,展示了整个仿真流程及其实际应用效果。 适合人群:电机设计工程师、科研人员及相关领域的学生。 使用场景及目标:适用于需要深入了解和掌握Jmag软件在电机电磁振动噪音联合仿真及偶合计算方面的专业人士,旨在提高电机设计水平,降低电磁振动噪音,增强电机性能和可靠性。 其他说明:本文不仅提供了理论知识,还结合了大量实战经验,使读者能够在实践中不断巩固所学内容。
2025-09-05 20:03:31 305KB
1
交错并联图腾柱PFC技术:无桥式Bridgeless PFC的C语言代码实现策略,交错并联图腾柱pfc,totem pole bridgeless pfc,无桥pfc,c语言代码实现 ,交错并联图腾柱PFC; Totem Pole Bridgeless PFC; 无桥PFC; C语言代码实现,基于PFC技术,实现无桥交错并联图腾柱PFC控制算法C语言代码 在电力电子领域,功率因数校正(PFC)技术是至关重要的,它旨在减少电力系统的能量损失并提高电能质量。近年来,随着对效率和可靠性的要求不断提高,交错并联图腾柱无桥式PFC技术逐渐受到重视。该技术通过消除传统PFC电路中的二极管桥,不仅降低了功耗,还提高了整个系统的功率密度。 C语言作为一种高效且灵活的编程语言,被广泛应用于电力电子设备的算法实现中。通过编写C语言代码,可以实现对交错并联图腾柱无桥式PFC技术的精确控制,包括电流和电压的实时监控、控制逻辑的实现以及反馈控制等。代码的编写需要深入理解PFC技术的工作原理,并且要针对具体的硬件平台进行适配和优化。 在交错并联图腾柱PFC技术中,通常使用多个功率级联模块共同工作,以实现更高的功率输出和更好的热管理。这种技术的关键优势在于其高效率和低电磁干扰(EMI),使其成为高频应用的理想选择。无桥式设计则进一步简化了电路结构,减少了组件数量,从而降低了成本和故障点。 文件列表中包含的文档文件如“交错并联图腾柱以及无桥的技术解析与语言代码.doc”和“交错并联图腾柱功率因数校正技术及其语言代码实现.html”等,可能详细描述了交错并联图腾柱无桥式PFC技术的原理、设计要点以及C语言代码实现的具体方法。这些文件对于从事电力电子行业工程师和研究者来说具有较高的参考价值,有助于他们在实践中应用和优化这一技术。 图腾柱结构因其简洁和高效而受到青睐。在设计交错并联图腾柱PFC电路时,需要综合考虑电路的稳定性和动态性能,以确保在各种负载条件下都能保持稳定的功率因数。此外,该技术的实现还需要考虑到热管理、电磁兼容性(EMC)和安全性等多个方面的因素。 柔性数组作为C99标准中的一个特性,为动态数据结构提供了更为灵活和高效的内存管理手段。在编写处理复杂数据结构和算法时,如PFC技术中的控制算法,灵活使用柔性数组可以有效地提升代码的可读性和可维护性。 交错并联图腾柱无桥式PFC技术是一种先进的功率因数校正方法,通过C语言代码实现该技术可以极大地提高电能转换效率和电能质量。这些技术的深入研究和应用推广,对于促进电力电子技术的发展和能源的可持续利用具有重要的意义。
2025-09-05 10:38:16 459KB 柔性数组
1
在很多场合有线通信技术并不能满足实际需要,比如在野外恶劣环境中作业。使用无线射频通信芯片构建的通信模块,用单片机作为控制部件,配合一定的外围电路就能很好地进行两地空间区域信号对接,实现自由数据通信,解决了无线通信的技术难题。并且其具有硬件构造简单、维护方便、通信速率高、性能稳定等优点,能在电子通信业得到广泛应用。  本文的控制部件选用AT89C51型单片机。由于这种芯片只有SPI通信接口,而目前常用的单片机都没有这种接口,因此需要对该芯片的通信时序进行模拟,所以在控制器里编程时要严格按照芯片工作时序进行。  电路原理  NRF24L01芯片构成的通信模块电路设计  NRF24L01芯片通信模块
2025-09-05 10:27:26 272KB
1
针对正弦波式光栅尺幅值相位细分法中对模数转换处理要求高、软件计算复杂、实时性不强等问题,提出了一种基于方波相移的光栅尺信号检测方法。该方法先将正弦波转换成方波,再从两路方波信号的相对相位位移中提取出光栅尺位移信号,电路简单,软件处理容易,细分精度取决于微处理器主频,对光栅尺信号的正弦近似程度要求不严格。此外,当光栅尺栅距在满足一定条件下与永磁直线同步电机进行一体化设计时,还能直接获得电机动子初始位置。最后,通过实验验证了该方法的可行性,光栅尺的细分精度为0.09μm,直线电机伺服系统的定位控制精度为±0. ### 正弦波光栅尺信号的方波相移式细分法及应用 #### 概述 本文介绍了一种用于正弦波光栅尺信号处理的新方法——方波相移式细分法。此方法旨在解决传统正弦波式光栅尺幅值相位细分法中存在的问题,如对模数转换器(ADC)的要求较高、软件计算复杂度大以及实时性不佳等。通过将正弦波转换为方波,并利用两路方波信号之间的相对相位位移来提取光栅尺位移信号,该方法实现了简单电路设计与易于软件处理的目标,同时细分精度由微处理器的主频决定,对光栅尺信号的正弦特性要求相对宽松。 #### 方波相移式细分法原理 1. **信号转换**:通过比较器或其他电路手段将正弦波信号转换为方波信号。这一步骤可以简化后续的信号处理流程,减少对ADC精度的要求。 2. **相对相位位移检测**:采用两路经过适当相移的方波信号,通过对这两路信号之间相对相位位移的检测来提取光栅尺位移信息。这种方法的优点在于可以通过简单的数字逻辑电路实现,降低了软件计算的复杂度。 3. **细分精度**:细分精度主要受到微处理器主频的影响,这意味着可以通过提高处理器的速度来进一步提高细分精度。此外,由于该方法对方波信号的正弦相似性要求不高,因此在一定程度上缓解了光栅制造工艺带来的限制。 #### 实际应用案例 文章提到,在特定条件下,将光栅尺与永磁直线同步电机(PMLSM)进行一体化设计时,不仅可以直接获得电机转子的初始位置信息,还能进一步提高系统的整体性能。通过实验验证,该方法能够实现光栅尺细分精度达到0.09μm,直线电机伺服系统的定位控制精度达到±0.9μm。 #### 技术优势与应用场景 - **技术优势**: - 硬件电路简单,降低了制造成本。 - 软件处理简便,减少了计算资源需求。 - 分辨率高,能够满足高精度测量的需求。 - 对光栅信号的正弦特性要求不高,适应性强。 - **应用场景**: - 高精度数控机床中的直线电机控制系统。 - 半导体制造设备中的精密定位系统。 - 光学测量仪器中的高精度位移检测系统。 #### 结论 正弦波光栅尺信号的方波相移式细分法是一种有效的信号处理技术,它不仅解决了传统方法中存在的问题,还提高了系统的实时性和准确性。该方法的应用前景广阔,尤其是在对精度要求极高的工业领域中具有巨大的潜力。通过进一步的研究和技术优化,预计这种细分方法将在未来的智能制造领域发挥重要作用。
2025-09-05 10:22:58 1.34MB 工程技术 论文
1
LS-DYNA、ABAQUS与多物理场联合仿真:碰撞、切割、流固耦合及破岩爆炸的数值模拟研究,《LSDyna与Abaqus仿真分析:碰撞、切割与流固耦合下的破岩爆炸及HyperMesh联合仿真技术》,lsdyna和abaqus碰撞,切割,流固耦合,破岩,爆炸; hypermesh联合abaqus,ansys,abaqus联合仿真; hypermesh六面体网格划分 ,lsdyna;abaqus碰撞;切割;流固耦合;破岩;爆炸;hypermesh联合仿真;hypermesh六面体网格划分,《多软件联合仿真碰撞破岩的LS-DYNA与Abaqus应用》
2025-09-05 09:09:46 139KB
1
### 软件程序外包服务技术保密协议知识点详解 #### 一、协议背景与目的 - **背景**:随着信息技术的发展,越来越多的企业选择将部分软件开发和服务外包给专业的服务商。在此过程中,涉及到的技术信息和技术资源的安全性和保密性变得尤为重要。 - **目的**:为了保护参与外包服务项目的各方的技术秘密不被非法泄露,确保这些保密信息不被滥用,制定本技术保密协议。 #### 二、协议主体与适用范围 - **主体**: - **甲方**:委托方,通常是需求方或项目发起方。 - **乙方**:服务提供商,负责提供外包服务的工作方。 - **适用范围**: - 本协议适用于乙方为甲方提供外包服务过程中所涉及的所有技术信息和技术资料的保密管理。 - 协议仅涉及乙方承担或参与外包服务工作的保密责任。 #### 三、保密信息的定义 - **保密信息**包括但不限于: - 外包服务合同中涉及的技术信息和技术资料。 - 甲乙双方之间的往来文件,如传真、信函、电子邮件等。 - 实施外包服务过程中产生的新技术信息和技术资料。 - 项目实施过程中确认需要保密的信息。 - 甲方计算机系统中的文件信息和各种资料。 #### 四、甲方的责任 - **提供必要信息**:甲方需按照合同规定向乙方提供必要的技术信息和技术资料。 - **信息记录**:甲方可以通过登记或备案的方式记录向乙方提供的技术信息。 - **保密责任**:甲方不得未经乙方同意将保密信息提供给与外包服务无关的第三方。 - **信息公开**:对于不再需要保密或者已经公开的信息,甲方应及时通知乙方。 #### 五、乙方的责任 - **用途限制**:乙方只能将保密信息用于为甲方提供外包服务。 - **保密义务**:未经甲方同意,不得向任何第三方透露保密信息。 - **资料管理**:妥善保管相关文件和资料,不得随意复制、仿造等。 - **人员管理**:确保相关工作人员遵守保密规定。 - **信息泄露处理**:在发现保密信息泄露时,应及时通知甲方并采取措施减少损失。 #### 六、知识产权归属 - 本协议涉及的保密信息中已拥有知识产权的部分归原所有人所有。 #### 七、信息共享规则 - **甲方**:为实施外包服务工作的需要,可以在不违反保密协议的情况下向项目相关方面分享信息。 - **乙方**:在向第三方提供保密信息之前,需要取得甲方的书面许可。 #### 八、违约责任 - 违反协议约定的行为将由违约方承担责任,并赔偿由此造成的一切损失。 #### 九、保密期限 - 双方需遵守的保密期限从协议签订或获取保密信息起,直至外包服务工作全部完成为止。若乙方提前退出项目,则需在项目结束后五年内继续履行保密责任。 #### 十、争议解决 - 发生争议时,双方应首先尝试通过友好协商解决。协商不成时,可提交甲方所在地人民法院进行裁决。 #### 十一、协议效力 - 本协议一式两份,甲乙双方各执一份,具有同等法律效力。 本技术保密协议旨在明确双方在软件外包服务过程中的保密责任,保护技术信息和技术资料的安全,确保合作顺利进行。通过详细的条款设定,有效地避免了因信息泄露导致的潜在风险,为双方提供了法律保障。
2025-09-04 19:45:01 16KB
1