MTK、RK SystemUI截功能添加,针对Android12 版本,各个平台下拉框快捷面板无截功能的现状,在QS面板添加截功能按钮,方便客户友好快捷使用。
2024-08-23 17:06:14 158KB
1
OpenGL是一种强大的图形编程接口,广泛应用于游戏开发、科学可视化、工程设计等领域。离渲染(Offscreen Rendering)是OpenGL中的一个重要技术,它允许我们在幕之外的纹理或帧缓冲区进行渲染操作,然后将结果用于后续的图形处理或者保存为图像文件。这个初级的OpenGL程序Demo就是围绕离渲染展开的,旨在帮助初学者理解这一概念。 在OpenGL中,通常的渲染流程是将图形绘制到默认的帧缓冲区,然后显示在幕上。离渲染则是在一个自定义的帧缓冲对象(Framebuffer Object, FBO)上进行,FBO可以关联多个附件,如颜色缓冲、深度缓冲和模板缓冲,从而提供了更大的灵活性。在这个Demo中,开发者创建了一个FBO,并将渲染的结果存储在一个纹理中,而不是直接显示在幕上。 我们需要设置FBO,这包括创建FBO、绑定附件(如颜色缓冲和深度缓冲)以及分配纹理来存储渲染结果。这部分代码可能涉及到`glGenFramebuffers`、`glBindFramebuffer`、`glGenTextures`、`glTexImage2D`和`glFramebufferTexture2D`等函数。 接着,开发者会在离渲染阶段进行图形的绘制,这可能包括设置视口、投影矩阵、模型视图矩阵等,然后调用`glDrawArrays`或`glDrawElements`来绘制几何物体。在Demo中,你可以看到两个正方体,一个内正方体可以被右键拖动旋转,一个外正方体可以被左键拖动旋转,这通过改变模型视图矩阵实现。 完成离渲染后,开发者可以将FBO中的结果应用到幕上。这通常通过绑定默认的帧缓冲、设置适当的混合模式和清除颜色,然后将FBO的纹理作为纹理坐标进行采样并绘制到幕上。这个过程可能涉及到`glBindTexture`、`glUniform`和`glDrawArrays`等函数。 离渲染在许多高级特效和计算中都有应用,比如环境光遮蔽(Ambient Occlusion)、全局光照(Global Illumination)、后期处理(Post-Processing)和幕空间反射(Screen-Space Reflections)。通过离渲染,我们可以对场景进行多次复杂计算,而不会影响到实时性。 这个OpenGL Demo是学习离渲染的良好起点,它可以帮助初学者理解如何创建和使用FBO,以及如何在离幕之间切换渲染目标。通过实践和调试,你可以更深入地了解OpenGL的渲染管线和状态管理,这对进一步学习高级图形编程技巧至关重要。同时,这个Demo也展示了OpenGL与输入设备交互的基本方法,如监听鼠标事件来改变视角。这个Demo提供了丰富的学习素材,对想要掌握OpenGL的初学者来说非常有价值。
2024-08-22 14:34:37 2.34MB OpenGL Demo Offscreen Render
1
【标题与描述解析】 "一个简单的动态3d地图demo可以拿来做大展示" 这个标题揭示了我们要讨论的核心内容:一个3D地图的演示项目,它具有动态特性,适用于大幕展示。描述中的“一个简单的动态3d地图demo,可以拿来做大展示”进一步确认了这是一个适合于展示目的的、简洁易用的3D地图实现。 【JavaScript开发-可视化/图表】 标签"JavaScript开发-可视化/图表"表明这个项目是用JavaScript编写的,专注于数据可视化和图表呈现。JavaScript是一种广泛用于Web开发的脚本语言,尤其在网页交互和动态内容展现方面表现出色。在这里,它被用来创建3D地图,这通常涉及到复杂的图形渲染和用户交互。 【3D地图技术】 动态3D地图通常基于WebGL,这是一个嵌入到HTML5中的API,允许在浏览器中进行硬件加速的3D图形渲染。通过JavaScript库如Three.js、Mapbox GL JS或者Cesium等,开发者可以构建出交互式的3D地理空间应用。这些库提供了丰富的功能,如地理坐标转换、地形纹理、光照效果、动画和用户交互等。 【大展示的应用场景】 “大展示”意味着这个3D地图demo可能设计用于商业报告、监控中心、展览展示或公共信息显示等场合。在这种情况下,视觉效果、性能优化和信息的清晰度都至关重要。大幕通常需要更高的分辨率和更流畅的动画,因此开发者可能需要特别考虑如何优化代码以适应这种环境。 【可能包含的文件结构】 在名为"simple3dMapDemo-master"的压缩包中,我们可以期待以下类型的文件: 1. `index.html` - 主页文件,包含了地图展示的HTML结构。 2. `main.js` 或类似 - JavaScript源代码文件,实现了3D地图的逻辑。 3. `style.css` 或者其他CSS文件 - 定义了地图和其他元素的样式。 4. `data.json` 或其他数据文件 - 可能包含地图数据、地标信息、动画帧等。 5. `lib/` 目录 - 存放JavaScript库,如Three.js或其他辅助库。 6. `images/` 或 `textures/` - 地图纹理、图标和其他图像资源。 7. 可能还会有`.gitignore`、`README.md`等项目管理和说明文件。 【学习与实践】 如果你打算探索这个3D地图demo,可以从以下几个方面入手: - 分析HTML结构,了解如何嵌入3D场景。 - 研究JavaScript代码,理解地图的生成、更新和交互逻辑。 - 查看CSS以理解样式和布局的实现。 - 理解数据文件如何与JavaScript代码交互,以驱动地图的变化。 - 学习和调整地图库的参数,以实现不同的视觉效果和交互行为。 这个简单的动态3D地图demo提供了一个很好的起点,可以帮助你掌握JavaScript开发3D地图的基本技能,并了解如何将其应用于大幕展示。通过深入研究和实践,你可以创建出更加复杂和个性化的3D可视化项目。
2024-08-19 15:43:43 18.55MB JavaScript开发-可视化/图表
1
QT多线程调用摄像头录是一个涉及到计算机视觉、多媒体处理和并发编程的复杂任务。在本项目中,我们主要会使用OpenCV库来获取摄像头的视频流,Qt5框架来构建用户界面并处理多线程,以及FFmpeg工具来进行视频压缩。下面将详细介绍这三个关键知识点。 1. **OpenCV**: OpenCV(开源计算机视觉库)是一个强大的图像和视频处理库,广泛用于计算机视觉相关的应用。在这个项目中,我们将使用OpenCV的`VideoCapture`类来打开和捕获摄像头的视频流。通过设置其参数,我们可以选择不同的摄像头设备,调整帧率、分辨率等。同时,OpenCV提供了`VideoWriter`类,用于将视频流写入文件,允许我们指定编码器、码率、分辨率等参数,实现录制功能。 2. **Qt5**: Qt是一个跨平台的应用程序开发框架,支持C++语言。在这里,Qt5主要用于创建用户界面,包括按钮、文本框等控件,让用户能够交互地选择摄像头、设定保存路径以及是否选择特定区域进行录制。Qt5的多线程模型,如`QThread`,可以帮助我们在主线程处理UI交互的同时,将视频录制的任务放在单独的线程中执行,避免阻塞用户界面。 3. **FFmpeg**: FFmpeg是一个全面的、免费的开源多媒体处理工具集合,它包含了各种编解码器和命令行工具。在项目中,FFmpeg的命令行工具被用来压缩录制的视频,以减小文件大小。通过在后台调用系统命令,我们可以传递合适的参数,如视频编码格式(如H.264)、质量、比特率等,以达到理想的压缩效果。 4. **多线程编程**: 在QT中,多线程是通过`QThread`类实现的。在本项目中,我们需要创建一个子线程来执行视频录制任务,防止这个长时间运行的任务影响主线程的响应速度。子线程中,我们会调用OpenCV的`VideoWriter`进行录制,并在完成后使用FFmpeg进行压缩。为了确保线程间通信的安全,可能需要使用信号和槽机制或者异步回调函数来更新UI状态。 5. **用户界面交互**: 用户界面设计是整个应用的关键部分。用户需要能够轻松地开启和停止录像,选择摄像头,指定保存路径,以及设定是否录制特定区域。这需要通过Qt的事件处理和信号槽机制来实现。例如,当用户点击“开始录制”按钮时,触发一个信号,启动子线程开始录像;当用户点击“停止录制”时,发送停止信号,子线程完成录制并关闭。 6. **视频区域选择**: 如果项目包含选择区域录制功能,可能需要使用OpenCV的图像处理函数来实现。用户可以通过拖动鼠标选择幕上的矩形区域,这部分可以利用鼠标事件和图像处理函数来实时绘制和捕捉选定的视频区域。 "QT多线程调用摄像头录"项目结合了OpenCV的视频处理能力,Qt5的UI设计和多线程管理,以及FFmpeg的视频压缩技术,提供了一个高效且用户友好的视频录制解决方案。通过熟练掌握这些技术,开发者可以构建出更加复杂和定制化的多媒体应用程序。
2024-08-13 10:54:41 12KB opencv ffmpeg
1
在本项目中,我们将深入探讨如何使用STM32微控制器结合FC-28土壤湿度传感器以及OLED显示来实现一个详细的监测系统。STM32是一款广泛应用于嵌入式领域的32位微控制器,以其高性能、低功耗和丰富的外设接口而备受青睐。FC-28土壤湿度传感器则用于测量土壤的水分含量,这对于农业自动化、植物养护或环境监控等领域具有重要意义。OLED显示则能直观地展示传感器采集的数据,便于实时监控。 我们要了解STM32的基础知识。STM32家族是基于ARM Cortex-M内核的,具有多种型号,如STM32F103、STM32F4等,分别适用于不同的性能需求。在本项目中,我们可能使用的是STM32F1系列,因为它具有足够的处理能力和资源,且性价比高。 接着,FC-28土壤湿度传感器的工作原理是利用电容式原理来检测土壤湿度。传感器由两片电极组成,当土壤中的水分含量增加时,电极间的介电常数也会增加,导致电容值改变,通过测量这个变化,我们可以推算出土壤的湿度。 为了读取FC-28传感器的数据,我们需要将其连接到STM32的ADC(模拟数字转换器)接口。STM32的ADC功能强大,可以将模拟信号转换为数字信号,供微控制器处理。在编程时,我们需要配置ADC的相关寄存器,设置采样时间、分辨率等参数,并启动转换,然后读取转换结果。 然后,我们需要编写驱动程序来处理OLED显示。OLED(有机发光二极管)幕具有自发光、高对比度和快速响应等优点,常用于小型嵌入式设备。OLED通常通过I2C或SPI接口与MCU通信。在STM32上,我们需要初始化这些接口,并发送指令控制幕显示内容。例如,设置显示模式、清、写入像素点或字符串等。 在软件设计方面,项目可能使用C或C++语言,遵循面向对象的原则进行模块化设计。代码可能包含以下几个部分:初始化函数,用于配置GPIO、ADC和I2C/SPI接口;传感器数据采集函数,用于周期性地读取土壤湿度;数据显示函数,负责更新OLED幕的内容;以及主循环,协调各个模块的运行。 在实际应用中,我们可能还需要考虑电源管理、抗干扰措施、数据记录和远程传输等功能。例如,通过加入RTC(实时时钟)模块记录测量时间,或者通过无线模块如蓝牙或LoRa将数据发送到手机或云端服务器,以便进一步分析和远程监控。 这个项目涵盖了STM32微控制器的使用、传感器数据采集、模拟信号转换、OLED显示技术以及嵌入式系统设计等多个方面的知识。通过实践这个项目,不仅可以提升对STM32和嵌入式系统的理解,还能掌握实际应用中的硬件接口设计和软件编程技巧。
2024-08-02 22:30:42 326KB stm32
1
JavaWeb课程大作业的大数据可视化大源码概述了一个系统,它能够将各种大数据可视化成大,以便用户可以更加直观地查看和分析数据。此系统包括前端页面、后台管理系统、数据库系统和调度系统等,主要应用于企业内部数据分析和信息可视化。 也可以是在校大学生的javaweb大作业。 适用人群包括对大数据有研究或应用需求的企业内部人员。使用场景主要用于企业内部数据分析和可视化,帮助企业内部用户更加清晰地查看和分析数据,以提升决策效率。目标是帮助企业内部用户更加清晰地观察和分析数据,以便更好地进行决策。
2024-08-02 10:43:07 42.73MB Javaweb 大数据可视化 动态页面
1
在本项目中,我们探讨的是一个基于Vue2.x、TypeScript和Element-UI框架构建的大可视化组件集合,特别适用于创建高效的信息展示驾驶舱。这个项目利用了ECharts这一强大的数据可视化库,提供了六个精心设计的组件,为数据洞察提供直观且吸引人的界面。 Vue2.x是一个广泛使用的前端JavaScript框架,它简化了组件化开发,允许开发者构建可复用、可维护的用户界面。Vue2.x引入了虚拟DOM,提高了性能,并提供了响应式数据绑定,使得数据和视图之间的交互更加流畅。 TypeScript是JavaScript的一个超集,它添加了静态类型系统,提高了代码的可读性和可维护性。在Vue2.x项目中使用TypeScript,可以捕获编译时的错误,减少运行时的bug,同时为大型项目提供更好的工具支持。 Element-UI是基于Vue2.x的一套成熟的UI组件库,它提供了丰富的UI元素,如表格、按钮、提示、下拉菜单等,帮助开发者快速构建美观的界面。在本项目中,Element-UI不仅用于基础界面构建,还可能与ECharts组件配合,实现数据驱动的交互式图表。 ECharts是一款由百度开源的数据可视化库,它支持各种图表类型,如折线图、柱状图、饼图、散点图等,且具有良好的交互性和丰富的自定义选项。在大可视化组件中,ECharts能够将复杂的数据转化为易于理解的图形,帮助决策者快速解读关键信息。 这六个大可视化组件(驾驶舱)可能是: 1. **综合仪表盘**:展示整体业务指标,如收入、利润、增长速率等。 2. **时间序列分析**:通过折线图或区域图显示随时间变化的趋势。 3. **地理分布图**:利用地图展示数据的地域分布情况。 4. **热点分析**:通过热力图或散点图揭示高密度区域或关联关系。 5. **对比分析**:通过柱状图或饼图对比不同类别的数据表现。 6. **KPI(关键绩效指标)指示器**:直观地展示关键指标的完成度或状态。 这些组件通常会包含动态更新、数据过滤、缩放、平移等交互功能,以适应不同场景的需求。开发者可以通过调整ECharts的配置项,定制组件的颜色、样式、动画效果等,以满足特定的视觉需求。 项目名为"data-visualization-master",暗示了这是一个专注于数据可视化的主项目,其中包含了所有相关的源代码、配置文件和资源。通过深入研究这些文件,开发者不仅可以学习到如何结合Vue2.x、TypeScript、Element-UI和ECharts构建大组件,还可以了解如何组织项目结构、优化性能以及实现组件间的通信。 总结来说,这个项目为开发者提供了一个实际应用示例,展示了如何利用现代前端技术栈创建高效的大可视化解决方案,对于提升数据可视化技能和实践经验有着显著的帮助。
2024-08-02 08:57:13 38.19MB
1
20套大数据可视化前端模板
2024-07-30 15:01:49 62.91MB 可视化 大屏展示 html
1
在本文中,我们将深入探讨基于STM32微控制器的一个项目,该项目实现了一个高效的单按键操作界面,结合了HMI(人机交互)串口显示和蜂鸣器反馈功能。这个设计巧妙地利用了单个按键的不同触发模式,即短按和长按,来实现多模式选择与确认操作。它已经被验证并在机器人实验室中得到了实际应用,因此具有很高的实用价值。 让我们了解一下“单按键多模式选择”这一概念。在传统的嵌入式系统中,用户界面通常需要多个物理按键来控制不同的功能。然而,在这个项目中,通过软件策略的优化,仅需一个按键就能完成多种操作,大大简化了硬件设计。短按通常用于切换或浏览可用模式,而长按则用于确认所选模式,执行对应的操作。这种设计不仅节约了成本,还减少了用户操作复杂性。 接下来,我们关注HMI串口。HMI(Human Machine Interface)是人与机器交流的接口,串口则是通过串行通信接口连接到微控制器的一种显示。在这个项目中,串口用于实时显示当前的模式状态以及相关的功能信息。STM32通过串口与串口进行通信,将处理后的数据发送到幕显示,用户可以通过幕直观地了解系统状态,提高了交互性和用户体验。 “HMI串口通信协议”是实现这一功能的关键。常见的串口通信协议有RS-232、RS-485和UART等,这里很可能是使用了UART(通用异步接收/发送)协议。UART允许STM32以较低的数据速率与串口交换信息,如模式选择、确认信号等。串口通信协议包括帧格式、数据速率、起始位、停止位和校验位等参数设置,这些都需要在软件代码中精确配置。 然后,蜂鸣器的集成为系统添加了音频反馈。在用户进行操作时,蜂鸣器可以发出不同频率或持续时间的声音,以区分短按和长按,或者在执行特定功能时提供反馈。蜂鸣器的控制通常涉及到GPIO(通用输入/输出)引脚的驱动,通过设置高低电平来产生声音。 这个项目巧妙地整合了单按键操作、HMI串口显示和蜂鸣器反馈,实现了简洁高效的人机交互。它展示了STM32的强大功能,以及在嵌入式系统设计中如何通过软件创新来优化硬件资源。通过学习这个项目的实现细节,开发者可以更好地理解和应用类似的交互设计,特别是在资源有限的嵌入式环境中。
1
通过视频讲解昆仑通态触摸如何设置与电脑通过网线建立TCP/IP通信
2024-07-21 12:57:45 256.9MB 昆仑通态
1