《FDFD.jl:纯Julia实现的电磁学有限差分频方法》 FDFD.jl是一个专门用于电磁学领的计算软件,它基于开源编程语言Julia,实现了有限差分频(Finite Difference Frequency Domain,简称FDFD)方法。FDFD是一种强大的数值计算技术,广泛应用于光子学、微波工程、纳米光学等领,用于求解波动方程,分析和设计电磁结构。 我们来深入了解FDFD方法。在电磁学中,麦克斯韦方程是描述电磁场变化的基本方程。FDFD方法是将这些偏微分方程转化为离散的代数方程组,通过在空间和频率进行离散化来逼近连续问题。这种方法的优势在于能够处理复杂几何形状和非均匀介质,同时保持较高的计算效率。在FDFD算法中,通常采用中心差分法对空间导数进行近似,而傅里叶变换则用于处理频率的关系。 Julia语言是FDFD.jl的核心,它的设计目标是提供高性能科学计算的能力,同时保持易于使用和可读性强的代码。Julia的动态类型和Just-In-Time (JIT)编译使其在数值计算领表现出色,可以与C、Fortran等传统科学计算语言相媲美。FDFD.jl利用Julia的这些特性,能够快速高效地执行电磁模拟任务。 在FDFD.jl项目中,`FDFD.jl-master`目录可能包含了源代码、示例、文档和测试等资源。源代码通常会包含定义网格、设置边界条件、执行傅里叶变换以及求解线性系统的函数。开发者和用户可以通过阅读和修改这些代码来定制自己的电磁模型,例如设计光波导、谐振器或者研究纳米结构的光谱特性。 FDFD方法的一个重要应用是波导分析。波导是传输电磁波的结构,如光纤通信和光子集成电路中的关键组成部分。通过FDFD,我们可以计算出波导的传播常数、模式分布以及损耗,这对于理解和优化波导性能至关重要。 此外,FDFD方法在纳米光子学中也有广泛的应用。纳米光子学研究的是尺度达到纳米级别的光与物质相互作用,这涉及到局表面等离子体共振、光子晶体和超材料等前沿领。FDFD可以模拟这些结构的电磁响应,预测其光学性质,为新型光子器件的设计提供理论支持。 FDFD.jl是利用Julia语言实现的电磁学计算工具,它为研究者和工程师提供了强大且灵活的平台,以解决各种电磁问题,包括但不限于光学、微波工程和纳米光子学。通过深入理解和运用这个库,我们可以更深入地探索和设计电磁系统,推动相关领的科技进步。
2025-07-22 19:55:44 681KB julia optics electromagnetics frequency-domain
1
多技术融合图像加密项目,结合了传统密码学、混沌理论和基于变换的图像加密技术。
2025-07-22 12:58:46 3.04MB python 图像加密
1
配置双向信任关系 在这篇文章中,我们将讨论如何配置双向信任关系。双向信任关系是指两个之间可以相互信任的关系,允许用户在另一个中使用资源。这种关系可以帮助简化资源分享和访问控制,提高网络安全性和效率。 我们需要了解什么是控。控是指控制器的简称,它是负责管理内计算机和用户的服务器。控提供身份验证、资源分配和安全管理等功能。 在这篇文章中,我们将使用两个,一个是 Win2003 ,另一个是 Win2008 。两个都使用各自的控制器提供 DNS 解析。我们将演示如何在这两个之间创建信任关系。 第一步,我们需要确保每个控制器都可以解析对方的 SRV 记录。这可以通过创建辅助区来实现。在每个 DNS 服务器上创建一个对方的辅助区,这样 DNS 服务器就可以对两个进行解析了。 在 Server1 上,我们打开 DNS 管理器,右键点击 itet.com 区,选择“属性”。在区属性中切换到“区传送”标签,勾选“允许区传送”,选择“只允许到下列服务器”,点击“编辑”按钮。然后,我们添加了 Server2 的地址 192.168.1.102,点击确定。这将允许 Server2 成为 itet.com 的辅助 DNS 服务器。 在 Server2 上,我们打开 DNS 管理器,选择“新建区”。区类型设置为辅助区,区的名称设置为 itet.com。然后,我们需要设置 itet.com 的主服务器,显然,itet.com 的主服务器是 Server1,也就是 192.168.1.101。 接下来,我们需要在 Server1 上允许 Server2 成为 contoso.com 的辅助服务器,然后在 Server1 上创建 contoso.com 辅助区,把 contoso.com 的区数据复制到 Server1 上。 现在,我们已经完成了 DNS 的设置,可以开始设置信任关系了。我们准备在 itet.com 和 contoso.com 之间设置双向信任关系。在 Server1 上,我们打开“Active Directory 和信任关系”,右键点击 itet.com,选择“属性”。在 itet.com 的属性中切换到“信任”标签,点击“新建信任”。 然后,我们选择建立双向信任关系,并选择是在两个之间建立不可传递的外部信任。我们输入 contoso.com 的名,并选择“全性身份验证”,允许信任用户使用被信任的所有资源。 我们已经成功地创建了双向信任关系,可以看到两个之间确实创建了不可传递的双向信任关系,这样两个的用户就可以相互访问对方的资源了。 这个实验其实有更广泛的适应性,同时可以用于 Win2000 与 Win2003,Win2000 与 Win2008 等信任关系的创建。大家可以举一反三,慢慢体会。如果选择可传递的林信任关系,也可以使用类似的方法来创建。
2025-07-15 20:11:52 898KB
1
matlab由频变时的代码OCT_MC FD-OCT A线或B扫描的蒙特卡洛模拟。 描述使用mcxyz_OCT中的最新版本。 为了: 您需要使用createSample Matlab文件为Monte Carlo模拟器生成数据。 使用新创建的文件运行.c代码。 使用lookSample生成Aline或B扫描。 注意:当对单层样品上的成像镜头使用长焦距(Rayleigth长度为5 mm)时,已验证模拟器是准确的。 但是,需要以较短的焦距(Rayleigth的长度为0.5 mm)实现准确的聚焦。 ===参考=== Zhao S.先进的蒙特卡罗模拟和机器学习,用于频光学相干断层扫描。 zh。 2016:157 Lima IT,Kalra A和Sherif SS。 改进的时光学相干断层扫描蒙特卡罗模拟的重要性抽样。 zh。 Biomedical OpticsExpress 2011年5月; 2:1069。 DOI:10.1364 / BOE.2.001069。 可从以下网站获取:[访问日期:2021年5月12日] Malektaji S,Lima IT,Escobar I.MR和Sher
2025-07-09 14:40:01 57.37MB 系统开源
1
基于MATLAB的轴承动力学模拟:滚动轴承不同故障类型建模分析,包括时频分析,故障诊断和寿命预测工具。,MATLAB轴承动力学代码(正常、外圈故障、内圈故障、滚动体故障),根据滚动轴承故障机理建模(含数学方程建立和公式推导)并在MATLAB中采用ODE45进行数值计算。 可模拟不同轴承故障类型,输出时波形、相图、轴心轨迹、频谱图、包络谱图、滚道接触力,根据模拟数据后续可在此基础上继续开展故障诊断和剩余寿命预测。 ,核心关键词:MATLAB轴承动力学代码; 滚动轴承故障机理建模; 数学方程建立; 公式推导; ODE45数值计算; 不同轴承故障类型模拟; 时波形输出; 相图输出; 轴心轨迹输出; 频谱图输出; 包络谱图输出; 故障诊断; 剩余寿命预测。,基于MATLAB的滚动轴承故障动力学模型及仿真系统开发
2025-07-06 18:31:18 1.3MB safari
1
内容概要:本文详细介绍了MATLAB在生物医学信号处理中的应用,涵盖信号预处理、时分析、频分析、时频分析、信号分类与识别等多个方面。通过具体的代码示例,解释了如何使用MATLAB进行心电图(ECG)、脑电图(EEG)等生物医学信号的数据导入、滤波去噪、时特征提取、频分析、时频分析和分类模型训练。此外,还讨论了机器学习和深度学习技术在生物医学信号处理中的应用前景,展望了未来的发展方向。 适合人群:从事生物医学信号处理的科研人员、医疗工作者和技术开发者,特别是有一定MATLAB编程基础的学习者。 使用场景及目标:① 学习如何使用MATLAB进行生物医学信号的预处理、分析和分类;② 掌握常用的信号处理技术和机器学习方法在生物医学领的应用;③ 了解生物医学信号处理的最新研究和发展趋势。 其他说明:本文通过大量的实际案例和详细的代码解析,使得读者能够在实践中掌握MATLAB的使用技巧,更好地应对生物医学信号处理的实际问题。无论是初学者还是有经验的研究者,都能从中受益。
1
内容概要:本文档主要介绍了计算机视觉领中图像变换与图像增强的相关技术。首先回顾了空间的灰度变换和空间滤波方法,包括图像反转、对数变换、幂次变换、分段线性变换、直方图均衡化和直方图规定化等技术。接着详细讨论了频变换和频增强技术,重点讲解了一维和二维傅立叶变换的定义、性质及应用。文档还介绍了几种常见的滤波器,包括理想低通滤波器、巴特沃思滤波器和高斯滤波器,并解释了它们的滤波效果和应用场景。 适合人群:计算机视觉、图像处理领的研究人员和技术开发者,尤其是有一定数学和编程基础的学生和工程师。 使用场景及目标:适用于学习和研究图像处理技术,特别是对频变换和滤波器的应用感兴趣的学者。目标是在理解和掌握频变换的基础上,能够应用于实际的图像处理项目,提高图像的质量和效果。 阅读建议:本文档内容详尽且涉及较多数学公式,建议结合实例进行学习,同时辅以相关工具和软件的实际操作,加深对理论知识的理解和应用能力。
1
"基于Matlab的心电信号ECG去噪系统:低通滤波与小波分解结合的时频波形显示与基线漂移、肌电干扰、工频干扰的消除操作界面与视频指南","基于Matlab的心电信号ECG去噪系统:低通滤波与小波分解的联合应用,实时显示时波形,有效去除基线漂移、肌电干扰及工频干扰,并附带操作界面与使用教程视频",心电信号ECG去噪,Matlab使用低通滤波和小波分解结合。 显示时和频波形 能去基线漂移、去肌电干扰、去工频干扰 带操作界面 有使用操作视频 ,心电信号去噪;Matlab低通滤波;小波分解;时波形;基线漂移去除;肌电干扰去除;工频干扰去除;操作界面;使用操作视频,"ECG信号去噪:Matlab低通滤波与小波分解结合,展示时频波形"
2025-06-12 22:08:43 166KB edge
1
内容概要:本文详细介绍了在MATLAB环境中进行多普勒频移条件下8-PSK调制解调及同步算法的仿真过程。首先解释了多普勒频移的基本原理及其对8-PSK信号的具体影响,展示了不同状态下的星座图对比。接着深入探讨了调制过程中遇到的问题以及解决方案,如自定义调制函数的应用。随后讨论了信道建模的方法,尤其是频率偏移的模拟方式,并分享了接收端同步的技术细节,包括载波同步采用的改进型Costas环算法和相位模糊问题的处理办法。最后,通过眼图比较验证了同步效果,同时指出当频偏过大时需要采取更复杂的算法来提高精度。 适合人群:从事无线通信系统设计的研究人员和技术爱好者,尤其关注数字调制技术和同步算法优化的人群。 使用场景及目标:适用于希望深入了解多普勒效应对于8-PSK调制解调影响的研究者;希望通过实例学习如何构建完整的通信链路仿真环境的学习者;旨在探索新的同步算法或改进现有算法的研发团队。 其他说明:文中提供了详细的MATLAB代码片段,帮助读者更好地理解和复现实验结果。此外还提到了未来可能的研究方向,即利用机器学习技术进一步提升频偏估计的效果。
2025-06-11 18:07:11 3.95MB
1
2023-04-06-项目笔记-第四百七十八阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用与生命周期 4.4.1局部变量的作用 4.4.2全局变量的作用 4.4.2.1全局变量的作用_1 4.4.2.476局变量的作用_476- 2025-04-24
2025-06-11 12:26:38 9.22MB
1