内容概要:本文档主要介绍了计算机视觉领域中图像变换与图像增强的相关技术。首先回顾了空间域的灰度变换和空间滤波方法,包括图像反转、对数变换、幂次变换、分段线性变换、直方图均衡化和直方图规定化等技术。接着详细讨论了频域变换和频域增强技术,重点讲解了一维和二维傅立变换的定义、性质及应用。文档还介绍了几种常见的滤波器,包括理想低通滤波器、巴特沃思滤波器和高斯滤波器,并解释了它们的滤波效果和应用场景。 适合人群:计算机视觉、图像处理领域的研究人员和技术开发者,尤其是有一定数学和编程基础的学生和工程师。 使用场景及目标:适用于学习和研究图像处理技术,特别是对频域变换和滤波器的应用感兴趣的学者。目标是在理解和掌握频域变换的基础上,能够应用于实际的图像处理项目,提高图像的质量和效果。 阅读建议:本文档内容详尽且涉及较多数学公式,建议结合实例进行学习,同时辅以相关工具和软件的实际操作,加深对理论知识的理解和应用能力。
1
内容概要:本文档详细介绍了基于贝斯优化(BO)和最小二乘支持向量机(LSSVM)的多变量时间序列预测项目。项目旨在通过优化LSSVM的超参数,提高多变量时间序列预测的准确性,解决传统模型的非线性问题,并高效处理大规模数据集。文档涵盖了项目的背景、目标、挑战及解决方案、特点与创新,并列举了其在金融市场、气象、交通流量、能源需求、销售、健康数据、工业生产优化和环境污染预测等领域的应用。最后,文档提供了具体的Matlab代码示例,包括数据预处理、贝斯优化、LSSVM训练与预测等关键步骤。; 适合人群:具备一定机器学习和时间序列分析基础的研究人员和工程师,特别是对贝斯优化和最小二乘支持向量机感兴趣的从业者。; 使用场景及目标:①提高多变量时间序列预测的准确性,解决传统模型的非线性问题;②高效处理大规模数据集,增强模型的泛化能力;③为相关领域提供可操作的预测工具,提高决策质量;④推动机器学习在工业领域的应用,提升研究方法的创新性。; 其他说明:此资源不仅提供了详细的理论背景和技术实现,还附带了完整的Matlab代码示例,便于读者理解和实践。在学习过程中,建议结合实际数据进行实验,以更好地掌握BO-LSSVM模型的应用和优化技巧。
2025-06-17 20:58:00 36KB 贝叶斯优化 LSSVM 时间序列预测 Matlab
1
《数字信号处理 门爱东第二版ppt》深入讲解了离散傅里变换(DFT)和快速傅里变换(FFT)这两个关键概念,它们在数字信号处理领域具有重要地位。离散傅里变换是将离散时间信号转换为离散频率信号的方法,而快速傅里变换则是一种高效计算DFT的算法。 离散傅里变换(DFT)是针对离散时间信号的周期性扩展,用于分析有限长度的信号。DFT定义为一个序列的离散频率分量,通过对序列进行一系列复指数乘积和求和来获得。DFT提供了将离散时间信号转换为离散频率域的手段,这对于分析和处理数字信号非常有用,尤其是在滤波、频谱分析和信号合成等应用中。 快速傅里变换(FFT)是DFT的一种优化算法,显著减少了计算量,使得DFT的计算效率大大提高。FFT的基本思想是将大问题分解为小问题,通过分治策略来实现。这使得在实际应用中,如在MATLAB等软件中,可以快速有效地计算DFT,极大地提升了数字信号处理的实时性和实用性。 在课程中,门爱东教授还提到了Z变换和离散傅里级数(DFS)。Z变换是分析离散时间信号的另一种方法,它可以将离散序列转换为复变量Z的函数,适用于处理无限长序列。DFS则是周期离散时间信号的傅里变换,它的频率是离散的,对应于信号的基频的整数倍。 离散傅里变换和快速傅里变换是数字信号处理领域的核心内容,因为它们能够提供有限长度序列的傅里分析,而且在计算机上易于实现。DFT的计算复杂度是O(N^2),而FFT将其降低到O(N log N),这一改进对于大规模数据处理至关重要。 此外,课程还涵盖了IIR和FIR数字滤波器的设计与实现,这些滤波器经常使用DFT或FFT来进行频率响应分析和设计。有限字长效应也是数字信号处理中的一个重要考虑因素,因为实际计算中总是存在有限的精度,这可能会影响信号处理的结果。 总结来说,《数字信号处理 门爱东第二版ppt》详尽阐述了离散傅里变换和快速傅里变换的基本原理、计算方法以及它们在数字信号处理中的应用,为学生和专业人士提供了深入理解和实践这些重要工具的资源。
2025-06-11 17:28:35 8.27MB 离散傅里叶变换 快速傅里叶变换
1
本项目基于朴素贝斯算法来解决垃圾邮件分类问题,并使用混淆矩阵进行了验证,得到了非常好的准确率和召回率(96%和97%)。此外还开发了一个可视化的垃圾邮件分类系统界面,使用PyQT进行界面设计。
2025-06-10 17:48:13 142.41MB 朴素贝叶斯 TF-IDF PyQT
1
涵盖了有关离散傅立变换公式及其组成部分的所有内容,并经常引用音频应用程序。
2025-06-08 16:05:20 92B 计算机科学
1
基于Matlab设计:基于DWT+SVD结合傅里变换的数字图像水印水印系统
2025-06-05 19:01:15 10.54MB
1
在电力系统分析中,谐波检测是一个重要的领域,它对于保证电网稳定运行、提高电能质量、减少系统损耗等方面具有重大意义。传统的电力系统谐波检测主要基于快速傅立变换(FFT)及其改进算法,尽管FFT能够精确地确定出平稳波形中各次谐波的幅值和相位,但它不提供时间局部信息,因此仅适用于稳态信号的分析处理。对于包含非稳态成分的信号,FFT则显得力不从心,无法给出有效的非稳态谐波信息。为了克服这一缺陷,近年来,小波变换以其在时域和频域同时具有良好的局部化特性,逐渐成为电力系统谐波检测领域的新宠。 小波变换是一种有效的时频分析工具,它能够在局部区域内对信号进行多分辨率分析。相较于傅立变换,小波变换能够提供时间局部信息,特别适合分析电力系统中的瞬态信号。小波变换的一个重要应用是在电力系统谐波测量中的应用。通过对含有谐波的信号进行正交小波分解,可以将不同尺度的结果看作是不含谐波的基波分量,从而实时跟踪谐波变化。特别是随着Mallat算法和高速数字处理芯片的应用,小波变换用于谐波检测的动态性能得到了极大提高,满足了电力有源滤波器对谐波实时检测的要求。 小波包变换是小波变换的延伸,它在小波变换的基础上对高频段的信号进行更精细的划分,使得高频段也能获得和低频段一样的频率分辨率。小波包变换在时变谐波分析中的应用证明了其对时变谐波的检测具有较高的精确性,同时也展现了小波包在时频域内优秀的分析性能。小波包变换可以配合连续小波变换使用,能同时检测并识别包括整数次、非整数次和分数次谐波在内的各种谐波。 复小波分析和自适应小波分析是小波变换领域的其他延伸,它们也逐渐应用于谐波检测当中。例如,文献[8]首次提出了将小波多分辨率分析与傅立变换结合进行谐波检测的算法。该算法首先利用小波变换将原始信号中的稳态成分和非稳态成分分离,然后用傅立变换分析稳态信号,得到稳态谐波的幅值和相位。但是,该方法并未对小波变换后的非稳态谐波信号进行进一步处理,在非稳态信号成分复杂时无法提供有效的非稳态谐波信息。针对这样的问题,本文将小波熵的概念引入到谐波检测中。 本文提出了一种改进的谐波检测算法,即通过结合傅立变换和小波变换的优点,将两者联合起来使用,以此达到对所有类型谐波信号都能有较好检测效果的目的。这种联合方法能够准确检测出稳态和非稳态谐波的相关参数,并通过仿真及实验证明了算法的正确性。此外,小波变换和傅立变换联合使用的方法,也得到了国家自然科学基金的资助。 傅立变换作为谐波分析的基础理论,是从频域角度观察信号的数学工具,其基本原理是任意函数都可以分解为无穷多个不同频率的正弦波之和。而小波变换则是一种窗口大小固定但形状可变的时频局部化分析方法,它允许在不同尺度上同时观察信号的时域和频域特征,特别适合分析电力系统中的瞬态信号。通过小波变换,可以准确确定信号突变的时刻,滤除干扰信号,从而更好地分析谐波信息。 在电力系统谐波分析的实际应用中,小波变换已经显示出了其独特的优势。它不仅可以用于电力系统谐波检测,还在信号去噪、故障诊断、信号压缩、图像处理等多个领域得到了广泛应用。未来,随着更多相关技术的研究和发展,相信小波变换在谐波检测及电力系统其他方面的应用会越来越广泛,成为不可或缺的技术工具。
2025-05-31 02:34:09 530KB 首发论文
1
开发板的设计基于STM32H750VBT6微控制器和12位精度的AD9226模数转换器(ADC),实现了信号采集以及快速傅里变换(FFT)算法的计算,以评估信号质量。STM32H750VBT6是STMicroelectronics(意法半导体)生产的一款高性能ARM Cortex-M7微控制器,主频高达400MHz,拥有丰富的外设接口和强大的数据处理能力。而AD9226是一款高性能的模数转换器,能够实现12位的采样精度和2.3MSPS(百万次采样每秒)的采样速率,非常适合于高速高精度的信号采集应用。 本开发板充分利用了STM32H750VBT6的处理能力,配合AD9226的高速高精度数据采集,通过FFT算法快速地对采集到的信号进行频谱分析。FFT算法能够在短时间内将时域信号转换为频域信号,这对于分析信号的频率成分、信噪比、谐波失真等信号质量指标至关重要。在数字信号处理、通信、音频分析、电子测量等领域,FFT都是非常重要的工具。 开发板配套的资料包括了详细的原理图,这意味着用户可以清晰地了解电路的设计,包括各组件之间的连接和信号流向。同时,提供了调试好的源代码,这对于进行二次开发或学习STM32平台的开发者来说非常有价值。源代码不仅展示了如何使用STM32H750VBT6的硬件资源,还包含了AD9226的初始化配置和数据采集流程,以及FFT算法的具体实现。PCB文件的提供使得用户可以根据需要进行电路板的复制或修改,以适应不同的应用场景。 开发板还包含了多种格式的图片文件(jpg),这些图片很可能是展示开发板实物外观或者某些关键步骤的示意图,有助于用户更好地理解产品和文档内容。此外,还包含有技术分析与展望的文档和有关信号采集与处理技术应用的引言文档,这些文档内容可能涉及到对开发板技术特点的深入分析,以及高精度技术在信号采集与处理领域的应用情况,为技术人员提供了宝贵的参考资料。 这款开发板是一款集成了先进微控制器、高精度模数转换器和强大信号处理能力的综合开发平台,适用于教学、研究以及产品开发等多个领域。通过其提供的详细资料和多种文件,用户能够获得从理论到实践的完整学习体验,对提高数字信号处理能力有着显著的帮助。
2025-05-29 13:30:45 6.24MB 正则表达式
1
斯工具箱使用
2025-05-23 10:41:35 650KB 贝叶斯
1
ppd的matlab代码贝斯零样本学习 我们的“贝斯零样本学习”论文的 Matlab 实现。 接受ECCV 2020,TASK-CV 研讨会。 作者: Sarkhan Badirli、Zeynep Akata 和 Murat Dundar 论文地址: 简要总结 我们提出了一个基于直觉的分层贝斯模型,即实际类源自它们相应的局部先验,每个先验都由它自己的元类定义。 我们推导了两层高斯混合模型的后验预测分布 (PPD),以有效地将局部和全局先验与数据似然混合。 这些 PPD 用于实现最大似然分类器,该分类器通过自己的 PPD 表示可见类,通过元类 PPD 表示不可见类。 在具有不同粒度和大小的七个数据集上,特别是在大规模 ImageNet 数据集上,我们表明所提出的模型与 GZSL 设置中现有的归纳技术相比具有很强的竞争力。 先决条件 代码在 Matlab 中实现。 任何高于 2016 的版本都可以运行代码。 数据 您可以从 下载论文中使用的数据集。 在您的主project path创建一个data文件夹,并将数据放在此文件夹下。 实验 要从论文中重现结果,请打开Demo.m脚本并指定
2025-05-17 10:39:17 9.24MB 系统开源
1