使用双向长短期记忆 (biLSTM) 进行需求预测这是一个回归问题。 在这个问题中,我们想根据过去记录中的 3 个因素来预测未来的需求。 您可以更改选择的数量(过去的记录数量)。 此外,您可以更改输入的数量。 例如,您也可以包括过去的需求,或删除一些输入。
2021-07-23 19:08:19 1.24MB matlab
1
近年来, 随着人工智能的发展, 深度学习模型已在ECG数据分析(尤其是房颤的检测)中得到广泛应用. 本文提出了一种基于多头注意力机制的算法来实现房颤的分类, 并通过PhysioNet 2017年挑战赛的公开数据集对其进行训练和验证. 该算法首先采用深度残差网络提取心电信号的局部特征, 随后采用双向长短期记忆网络在此基础上提取全局特征, 最后传入多头注意力机制层对特征进行重点提取, 通过级联的方式将多个模块相连接并发挥各自模块的作用, 整体模型的性能有了很大的提升. 实验结果表明, 本文所提出的heads-8模型可以达到精度0.861, 召回率0.862, F1得分0.861和准确率0.860, 这优于目前针对心电信号的房颤分类的最新方法.
1