使用师生模型进行人声旋律提取的半监督学习 ISMIR(2020)| “使用师生模型进行人声旋律提取的半监督学习”的源代码| 抽象的 缺少标记数据是许多音乐信息检索任务(例如旋律提取)中的主要障碍,在这些任务中,标记非常费力或成本高昂。 半监督学习(SSL)提供了一种通过利用大量未标记数据来缓解此问题的解决方案。 在本文中,我们提出了一种使用师生模型进行人声旋律提取的SSL方法。 教师模型经过预先标记的数据训练,并指导学生模型在自训练设置中在未标记输入的情况下做出相同的预测。 我们研究了具有不同数据增强方案和损失函数的三种师生模型设置。 此外,考虑到测试阶段标记数据的稀缺性,我们使用分析合成方法从未标记数据中人工生成带有音高标记的大规模测试数据。 结果表明,SSL方法仅针对有监督的学习即可显着提高性能,而这种改进取决于师生模型,未标记数据的大小,自训练迭代的次数以及其他训练细节。 我们还发现
2021-11-01 16:08:08 19.47MB Python
1
半监督学习 楷模 梯形图网络(带有自动编码器) 临时集合(与CNN) 锐化的临时合奏(带有CNN)(基于临时合奏) 卑鄙的老师(与CNN) MixMatch(带有CNN) 结果 在results.xlsx查看results.xlsx
2021-11-01 11:00:55 44KB Python
1
While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in a variety of domains. Graph-based SSL algorithms, which bring together these two lines of work, have been shown to outperform the state-of-the-art in many applications in speech processing, computer vision, natural language processing, and other areas of Artificial Intelligence. Recognizing this promising and emerging area of research, this synthesis lecture focuses on graphbased SSL algorithms (e.g., label propagation methods). Our hope is that after reading this book, the reader will walk away with the following: (1) an in-depth knowledge of the current stateof- the-art in graph-based SSL algorithms, and the ability to implement them; (2) the ability to decide on the suitability of graph-based SSL methods for a problem; and (3) familiarity with different applications where graph-based SSL methods have been successfully applied.
2021-10-14 15:55:14 1.4MB 机器学习 半监督学习 基于图的学习
1
机器学习通过对数据进行预测来分析研究和构造算法,根据输入建立模型,以做出决策或预测。我们研究了不同的机器学习方法及其技术,作了一个简单的分类及总结,适合机器学习的初始学习者阅读。
1
半监督学习以改善肺癌的检测 使用生成模型和半监督学习促进肺癌检测 用于训练的数据集 LUNA16数据集( ) Kaggle数据科学碗2017( ) 建筑学 结果 结节检测器结果 发电机结果 分类器结果 方法 准确性 监督学习 64% 半监督学习 87.3% 资源 Kaggle数据科学碗2017内核 Luna2016-肺结节检测 Tensorflow中的半监督学习GAN [链接] DSB2017 [链接] Keras-GAN [链接] 使用很少的数据构建强大的图像分类模型[link] 贡献者: Dhamodhran( @ svella9 ) 悉达思R科蒂( siddharthkoti ) 维杰·蒙达拉吉( Vijay-Mundaragi )
1
针对不平衡数据中特征维数高、标记样本缺乏问题,提出一种基于遗传算法和BiasedSVM的不平衡数据半监督特征选择算法。该方法首先利用初始的标记样本集训练处理不平衡数据的Biased-SVM模型,然后用训练好的Biased-SVM模型为未标记样本加上标签,再把新标记样本加入到初始标记样本集中,得到新标记样本集,最后采用基于遗传算法的不平衡数据特征选择方法选出最优的特征子集。实验结果表明,所提方法在不同的标记样本率下均具有较高的平均特征子集缩减率和平均小类识别率。
1
Python的半监督学习框架 该项目包含用于半监督学习的Python实现,并与scikit-learn兼容,包括 对比悲观似然估计(CPLE) (基于-但不等同于 ),适用于所有分类器的“安全”框架,可以产生预测概率(此处的安全意味着在标签和未标签数据上训练的模型都应不会比仅根据标签数据训练的模型差) 自我学习(自我训练),一种适用于任何分类器的幼稚半监督学习框架(使用经过训练的分类器迭代标记未标记的实例,然后在结果数据集上对其进行重新训练-参见例如 ) 半监督支持向量机(S3VM)-一种简单的scikit-learn兼容包装器,用于由Fabian Gieseke,Antti Airola,Tapio Pahikkala,Oliver Kramer开发的QN-S3VM代码(请参见 )包含此方法用于比较 第一种方法是对的新颖扩展用于任何区分性分类器(与原始CPLE的区别在下面进行说明)。
2021-09-08 14:52:30 931KB Python
1
医学图像分割的半监督学习。 近来,半监督图像分割已成为医学图像计算中的热门话题,不幸的是,由于隐私策略等原因,只有少数开源代码和数据集。为了便于评估和公平比较,我们正在尝试建立一个半监督医学图像分割基准,以促进医学影像计算社区中的半监督学习研究。如果您有兴趣,可以随时将实现或想法推送到此存储库。 该项目最初是为我们以前的工作开发的,如果您发现对您的研究有用,请考虑引用以下内容: @article{luo2020urpc, title={Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency}, author={Luo, Xiangde and Liao, Wen
2021-09-07 15:10:50 114KB semi-supervised-learning Python
1
半监督深度学习算法Tri-net
2021-06-25 17:06:52 52KB 半监督学习 深度学习 Tri-net 算法
1
盛大 这是论文的代码:用于图的半监督学习的图随机神经网络[ ] 如果您认为我们的工作对您有帮助,请引用我们的论文: @inproceedings{feng2020grand, title={Graph Random Neural Network for Semi-Supervised Learning on Graphs}, author={Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny Kharlamov, Jie Tang}, booktitle={NeurIPS'20}, year={2020} } 要求 的Python 3.7.3 请通过pip install -r requirements.txt安装其他程序包 使用范例 在Cor
2021-06-25 16:04:22 5.07MB 系统开源
1