"大功率直流充电桩全解析:代码、原理图与PCB板全套解决方案,实用参考价值之选",大功率直流充电桩代码,原理图,pcb全套,很有参考价值。 ,大功率直流充电桩; 代码; 原理图; PCB全套; 参考价值,大功率直流充电桩全套技术资料
2025-10-14 16:33:30 88KB
1
内容概要:本文介绍了一个基于VMD-NRBO-Transformer-TCN的多变量时间序列光伏功率预测项目。通过变分模态分解(VMD)对原始光伏数据进行去噪和多尺度分解,提取平稳子信号;结合Transformer的自注意力机制捕获长距离依赖关系,利用时序卷积网络(TCN)提取局部时序特征;并引入牛顿-拉夫逊优化算法(NRBO)对模型超参数进行高效优化,提升训练速度与预测精度。整体模型实现了对复杂、非线性、多变量光伏功率数据的高精度预测,具备良好的鲁棒性与稳定性。文中还提供了部分Python代码示例,涵盖VMD实现和Transformer-TCN网络结构定义。; 适合人群:具备一定机器学习与深度学习基础,从事新能源预测、时间序列建模或智能电网相关研究的研究生、科研人员及工程技术人员;熟悉Python和PyTorch框架者更佳; 使用场景及目标:①应用于光伏发电系统的短期与中期功率预测,支持电网调度与储能管理;②作为多变量时间序列预测的高级案例,用于研究VMD、Transformer、TCN融合模型的设计与优化方法;③探索NRBO等数值优化算法在深度学习超参数调优中的实际应用; 阅读建议:建议读者结合代码与模型架构图逐步理解各模块功能,重点掌握VMD信号分解、Transformer与TCN的特征融合机制以及NRBO优化策略的集成方式,可自行复现模型并在真实光伏数据集上验证性能。
2025-10-13 14:47:33 26KB Transformer
1
接收机的噪声系数与等效噪声温度是通信系统中重要的性能参数,它们直接影响着接收机处理信号的能力和质量。噪声系数(Noise Figure,NF)是衡量接收机内部噪声大小的一个指标,它定义为在标准的输入信号条件下,实际接收机输出信噪比与理想接收机输出信噪比的比值。等效噪声温度(Equivalent Noise Temperature,Te)则是将噪声系数转化为温度表示形式的参数,使得不同噪声特性设备的噪声性能可以相互比较。 在接收机的噪声来源中,主要分为热噪声和非热噪声两大类。热噪声是由导体中自由电子的无规则运动产生,与温度直接相关,而其他如太阳辐射、宇宙辐射、电磁干扰等属于非热噪声。通常情况下,热噪声是无法消除的,而非热噪声在一定的条件下可以被有效抑制。 热噪声可以用功率谱密度来描述,其功率谱密度与绝对温度和频率成正比,表达式为P(f) = kTB,其中k是玻尔兹曼常数,T是绝对温度(以开尔文为单位),B是带宽。热噪声电压呈现高斯分布,其均值为零,方差与电阻值和温度有关。通过计算可以得到热噪声功率,带宽为B时,噪声功率为σ^2 = kTB。 噪声系数是衡量接收机内部噪声的一个关键指标,它反映了网络本身产生的噪声对信号的影响。一个理想的接收机是没有噪声的,实际的接收机总是会增加一定的噪声,噪声系数正是这个增加量的衡量。具体来说,噪声系数F定义为在相同的输入信噪比下,实际接收机的输出信噪比与理想接收机的输出信噪比之比。噪声系数F可以转化为等效噪声温度Te,关系式为Te = (F-1)T0,T0为室温下的绝对温度。这一关系表明,噪声系数越大,等效噪声温度就越高。 对于级联系统,每个组件的噪声系数可以通过级联的方式来合成整个系统的总噪声系数。总的噪声系数的计算公式为F_total = F1 + (F2-1)/G1 + (F3-1)/G1G2 + ...,其中F1、F2、F3分别是各个组件的噪声系数,G1、G2是相应组件的增益。 等效噪声温度的概念也可以用于级联系统,总的等效噪声温度为各个组件等效噪声温度的和,每一级的温度都必须根据其增益进行修正。对于天线,其输出的噪声也可以等效成一个温度,称为天线的等效噪声温度。在接收系统中,天线的噪声通常是由天线本身的热噪声决定的,而天线噪声通过馈线进入接收机后,会限制整个接收系统的噪声性能。天线的等效噪声温度定义为T_a = P/N,其中P为天线输出的总噪声功率,N为带宽。 在实际应用中,了解和优化接收机的噪声系数与等效噪声温度,对于提高接收机的灵敏度、降低误码率,从而提高通信系统的整体性能具有重要意义。特别是在低信噪比环境下,噪声性能的优化变得尤为重要。
2025-10-11 11:44:45 674KB 噪声系数 基带信号 功率谱密度
1
  本文采用电子设计自动化(EDA)软件对动态偏置射频功率放大器进行仿真设计.详细介绍了动态偏置功率放大器的工作原理及其实现方法.文中根据输入信号的功率变化对末级场效应管漏极偏压进行动态控制以获得更高效率,该方法结构简单且实用性强.仿真结果表明该功率放大器对于2.0175GHz的TD-SCDMA调制信号,在整个输入功率变化范围内,功率附加效率(PAE)与传统的功放相比提高了5-12%左右.
2025-10-09 23:42:16 243KB 研究论文
1
函数 binAveraging 通过平滑高频范围,可以更清晰地可视化湍流速度密度的功率谱密度估计。 它还可以用于将数据平均到不重叠的 bin 中。 本呈件包含: - 函数 binAveraging.m - 示例文件 Example.mlx - 包含模拟湍流速度波动的时间序列的数据集 PSD_velocity.mat 那是提交的第一个版本; 一些错误可能仍然存在。 欢迎任何意见、建议或问题!
2025-10-08 18:52:58 299KB matlab
1
内容概要:本文详细介绍了设计一个输入400V、输出48V、功率2KW的全桥LLC谐振变换器的过程。主要内容包括谐振电路参数(如谐振电感Lr、谐振电容Cr、励磁电感Lm)的计算,变压器匝比的确定,MOS管和二极管的选择,以及输出电容的计算。文中还展示了如何利用Matlab/Simulink进行仿真验证,确保设计的正确性和稳定性。通过调整参数,观察输出电压和电流的波形,确保设计满足要求。 适合人群:电力电子工程师、从事电源设计的技术人员、对LLC谐振变换器感兴趣的科研人员。 使用场景及目标:适用于需要设计高效、稳定的全桥LLC谐振变换器的场合,特别是对于需要精确计算和仿真的应用场景。目标是帮助读者掌握LLC谐振变换器的设计方法,提高设计效率和准确性。 其他说明:文章提供了详细的数学公式和Matlab代码片段,便于读者理解和复现设计过程。同时,强调了实际应用中的注意事项,如元件选择、参数调整和仿真技巧。
2025-10-08 16:08:45 856KB
1
内容概要:本文介绍了一种300W ACDC变换器的设计方案,采用前级单相PFC-Boost电路实现功率因数校正与整流,提升输入侧电能利用率,并通过后级半桥LLC谐振变换器实现软开关,降低开关损耗,提高效率与系统稳定性。系统输出为12V/25A,适用于高效率、高功率密度电源场景。 适合人群:从事电力电子、电源设计相关工作的工程师,具备一定电路拓扑与控制理论基础的研发人员。 使用场景及目标:①应用于服务器电源、通信设备电源等对效率和稳定性要求较高的场合;②学习PFC与LLC两级结构设计方法,掌握软开关实现原理与功率因数校正技术。 阅读建议:重点关注前级PFC控制策略与后级LLC谐振参数设计之间的协同优化,结合实际电路调试理解软开关实现条件与系统动态响应特性。
2025-09-28 11:19:00 634KB
1
利用Matlab Simulink平台进行虚拟同步发电机(VSG)控制的仿真方法,旨在解决电网电压不平衡条件下的电流平衡、有功恒定和无功恒定控制问题。文中首先解释了三种不同控制模式的选择方式及其核心算法,强调了电流平衡模式下的负序电流补偿器的设计以及关键参数的设置。接着讨论了如何通过调节电压不平衡度来模拟不同的电网状况,并提供了具体的MATLAB代码示例用于调整跌落系数矩阵。此外,针对有功恒定模式,提出了加入低通滤波以减少功率振荡的方法。最后提到了一些高级特性,如批处理仿真和波形录制功能,帮助用户更好地理解和优化仿真结果。 适用人群:对电力系统稳定性分析感兴趣的科研工作者和技术人员,特别是那些希望深入了解VSG控制机制及其应用的人群。 使用场景及目标:适用于需要评估或测试VSG控制系统性能的研究项目;也可作为教学材料辅助学生掌握相关理论知识和技术技能。 其他说明:文中提供的参考资料进一步补充和完善了所介绍的技术细节,为实际操作提供了指导。
2025-09-25 20:43:32 1.98MB
1
高压直流电源广泛应用于医用X射线机,工业静电除尘器等设备。传统的工频高压 直流电源体积大、重量重、变换效率低、动态性能差,这些缺点限制了它的进一步应用。而高频高压直流电源克服了前者的缺点,已成为高压大功率电源的发展趋势。本文对应用在高输出电压大功率场合的开关电源进行研究,对主电路拓扑、控制策略、工艺结构等方面做出详细讨论,提出实现方案。
2025-09-22 14:15:19 1.67MB LCC谐振,高压电源,连续,断续
1
MATLAB Simulink下的风光储与电解制氢系统仿真研究:光伏耦合PEM制氢技术与功率控制策略探讨(附参考文献),MATLAB Simulink下的风光储与电解制氢系统仿真研究:光伏耦合PEM制氢技术与功率控制策略探讨(附参考文献),MATLAB Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢 附参考文献 光储电解制氢模型,光伏制氢,电解槽恒功率制氢,光伏耦合PEM制氢,母线电压维持800V。 光伏采用mppt最大功率跟踪;储能采用电压电流双闭环控制;电解槽采用功率外环加电流内环控制,恒功率制氢。 光伏出力不足时,蓄电池出力,光伏出力充足时,蓄电池充电,波形稳定,运行完美。 附相关参考文献 334 ,核心关键词: 光储电解制氢模型; 光伏制氢; 恒功率制氢; 光伏耦合PEM制氢; MPPT最大功率跟踪; 电压电流双闭环控制; 电解槽控制; 母线电压800V; 波形稳定。,Simulink风光储耦合制氢仿真模型:基于PEM电解的恒功率氢能生成研究
2025-09-19 10:59:35 2.2MB xhtml
1