提出了在sNN = 5.02 TeV质子-铅(p + Pb)碰撞和s = 2.76 TeV质子-质子碰撞的射流截面中包容性射流产生的中心性和速度依赖性的测量。 这些量是在分别对应于27.8 nb -1和4.0 pb -1的综合光度的数据集中测量的,该数据在2013年由大型强子对撞机的ATLAS检测器记录。p + Pb碰撞中心性的特征在于总横向能量 被测
2024-07-03 20:42:23 1.5MB Open Access
1
使用大型强子对撞机的CMS检测器研究了sNN = 5.02TeV的核子-核子(NN)质心能量在pPb碰撞中的包容性射流产生。 分析了对应于30.1 nb -1的综合亮度的数据样本。 射流横向动量谱是在NN质量中心框架中覆盖范围-2.0 <αCM<1.5的七个伪快速区间中研究的。 比较了喷气机的产量在向前和向后的伪快速运动,并且在测得的运动学范围内没有观察到关于α·CM = 0的明显不对称性。 将pPb系统中的测量值与通过在s = 7TeV的pp碰撞中从先前测量中外推获得的参考喷射光谱进行比较。 在所有伪快速范围内,包括次要阶扰动QCD计算所预测的,在包容性喷气飞机生产中的核修饰很小,该方法将核效应纳入了parton分布函数中。
2024-07-03 19:07:06 1.15MB Open Access
1
提出了带电荷的射流产生量的测量值,该值是使用ALICE检测器以sNN = 5.02 TeV记录的p-Pb碰撞的。 通过在中子量热仪中以零度接近射束方向的能量沉积来确定中心类别,以最大程度地减少选择的动态偏差。 相应数量的参与者或二元核子-核子碰撞是根据Pb快移区域中的粒子产量确定的。 使用反kT算法在中心速度区域从带电粒子重建了射流,分辨率参数R = 0.2和R = 0.4在横向动量范围20到120 GeV / c中。 重建的射流动量和产量已针对探测器效应和潜在事件背景进行了校正。 在所考虑的五个中心位置中,p pb碰撞中的带电射流产生与pp碰撞中的二进制缩放所预期的产生一致。 用两个不同分辨率参数重建的射流产量之比也与中心性选择无关,这表明在所报告的中心性类别中不存在径向射流结构的重大修改。
2024-07-03 18:10:54 1.23MB Open Access
1
在网络安全领域,恶意软件分析是一项至关重要的任务,它旨在揭示恶意程序的行为模式并发现潜在的威胁。Cuckoo Sandbox是一个广泛使用的开源自动化恶意软件分析系统,它能够在隔离的环境中(称为沙箱)运行可疑文件,观察其行为而不会对实际系统造成影响。本数据集涉及的是恶意程序在Cuckoo沙箱中运行时生成的Windows API调用序列,这为研究人员提供了一种深入理解恶意软件功能和行为的途径。 API(Application Programming Interface)是操作系统提供的接口,允许软件应用程序与操作系统交互。Windows API是Windows操作系统的核心组成部分,提供了大量的函数调用来实现各种操作,如文件管理、网络通信、进程和线程控制等。恶意软件往往依赖特定的API来执行其恶意操作,因此分析API调用序列可以帮助我们识别恶意活动的特征。 数据集中包含的`all_analysis_data.txt`文件很可能包含了每条恶意程序执行过程中记录的API调用及其参数、调用顺序和时间戳等信息。这些信息对于训练机器学习模型是宝贵的,因为不同的恶意软件可能会有独特的API调用模式。通过学习这些模式,模型可以学习区分良性程序和恶意程序,从而实现分类。 机器学习在恶意软件检测中的应用通常分为几个步骤: 1. **数据预处理**:清洗API序列数据,去除不相关的调用,归一化参数,处理缺失值,以及可能的异常值。 2. **特征工程**:提取关键特征,如频繁API组合、API调用频率、调用路径等,这有助于机器学习模型捕获恶意行为的特征。 3. **模型选择**:根据问题的性质选择合适的机器学习算法,如支持向量机(SVM)、决策树、随机森林、神经网络等。 4. **训练与验证**:使用一部分数据训练模型,并通过交叉验证或独立测试集评估模型性能,如精确度、召回率、F1分数等。 5. **模型优化**:通过调整超参数、集成学习方法或使用更复杂的模型结构提升模型的预测能力。 6. **实时检测**:将训练好的模型部署到实际环境中,对新的未知文件进行分类,以识别潜在的恶意行为。 这个数据集为研究和开发更高效的恶意软件检测系统提供了基础,有助于网络安全专家和研究人员构建更加智能的防御策略。通过深入研究和分析这些API序列,我们可以发现新的攻击模式,提高现有的安全防护体系,保护用户和企业的网络安全。
2024-07-03 17:04:01 11.8MB API序列 数据集
在左-右孪生希格斯(LRTH)模型的框架中,我们考虑了最近一次在LHC上寻找高质子核共振的约束,并发现重中性玻色子ZH的质量低于2.76 TeV。 在这些约束下,我们研究了希格斯-格格勒耦合生产过程e + e-→ZH,e + e-→νeνe¯H和e + e-→e + e-H,上夸克汤河耦合生产过程e + e- →tt¯H,在e + e-对撞机上,希格斯自耦产生过程e + e-→ZHH和e + e-→νeνe¯HH。 此外,我们研究了希格斯玻色子的主要衰变模式,即h→ff′(f = b,c,τ),VV⁎(V = W,Z),gg,γγ。 我们发现LRTH效应相当大,因此e + e-对撞机上的希格斯玻色子过程可能是LRTH模型的敏感探针。
2024-07-03 14:52:48 719KB Open Access
1
最小超对称标准模型(MSSM)的框架中提供了一个中子希格斯玻色子与光子在电子-正电子碰撞中的单一产生的完整单环预测,并特别注意每种类型的单个贡献 图。 该过程在树级别没有幅度,因此对单环影响和希格斯的基本动态直接敏感。 为了研究新物理学的影响,有四种不同的方案,其中包括质量和耦合与发现的希格斯玻色子一致的希格斯玻色子,以及搜索其他希格斯玻色子和粒子边界所允许的相当大的参数空间 ,在MSSM中选择。 标准模型和MSSM中横截面对c.m的依赖性。 通过考虑初始电子束和正电子束的极化来检查能量。 还详细研究了每种单回路图对总横截面的影响。 此外,针对每种情况,在平面mA-tanβ上扫描e-e +→γh0以及e-e +→γA0的总横截面。 完整的一环贡献对于在未来的电子-正负电子对撞机中分析超出标准模型物理学至关重要。
2024-07-03 12:47:31 1.77MB Open Access
1
进行暗物质搜索,寻找具有较大的横向动量缺失和希格斯玻色子衰减到一对底部夸克或一对光子的事件。 质子质子碰撞的质心能量为13 TeV的质子碰撞数据,是在2015年用LHC的CMS检测器收集的,对应的综合光度为2.3 fb -1。 结果是在Z'-两个希格斯双峰模型的上下文中解释的,其中标准模型的规范对称性由U(1)Z'组扩展,并带有一个新的巨型Z'规范玻色子,以及希格斯 部门增加了四个希格斯玻色子。 在该模型中,高质量共振Z'衰减为拟标量玻色子A和轻质SM类标量希格斯玻色子,并且A衰减为一对暗物质粒子。 没有超过背景预测的显着过量。 来自两个衰减通道的结果相结合,在m Z'-m A相空间中的信号截面中产生了排除极限。 例如,观测数据排除了Z'质量范围为600至1860 GeV,对于Z'耦合强度g Z'= 0.8,A与暗物质颗粒的耦合gχ= 1,真空期望值tan的比 β= 1,m A = 300 GeV。 该分析的结果对于100 GeV以下的任何暗物质粒子质量均有效。
2024-07-03 11:26:55 822KB Open Access
1
本文对已发布的 chp5 附件包(Vs2019 运行老版本c# 项目所产生的一些问题的处理方法).rar包中文件有关乱码问题,作了些补充修改完善。
1
我们提供了在纵向极化的深部非弹性散射中,浓味对包容性结构函数g1的重味贡献的完整的从下至上的QCD校正的第一计算。 结果是通过大量的分析方法得出的,并且完全依赖于重夸克的质量。 我们讨论了计算的所有相关技术细节,并提供了重夸克缩放函数的数值结果。 我们执行重要的交叉检查,以验证结果在已知的光产生极限内以及在重夸克的非极化电产生中的结果。 我们还将计算结果与极化情况下可获得的部分结果进行比较,尤其是在渐近大光子虚拟度的限制范围内,并分析缩放函数在阈值附近的行为。 迈向现象学应用的第一步,是通过对未来电子离子对撞机在极化深非弹性散射中产生包容性魅力的一些估计,并研究其对极化胶子分布的敏感性,从而迈出了第一步。 研究了重夸克电生产对非物理因式分解和重新规范化尺度以及重夸克质量的剩余依赖性。
2024-07-02 12:42:48 1.11MB Open Access
1
可以通过普通(γ)和隐藏光子(γ')之间的动力学混合来连接粒子物理的可见和暗区。 如果后者是轻的,则类似于中微子过程,它通过γ-γ'振荡以高能碰撞产生普通粒子。 一般而言,如果隐藏光子的质量小于1 MeV,则实验对隐藏光子的质量不敏感,并且不会衰减为e + e-对。 尽管如此,人们仍可以利用丢失的能量和从探测器上散射出来的信号作为特征来搜索隐藏的光子。 介质的存在会抑制光向量的产生,从而使实验对整个模型不敏感。 在媒体中,通常由于γ-γ'振荡的倾泻而抑制了隐藏的光子产生,从而使实验对整个模型不敏感。 我们提出了对光隐藏的光子产生,传播和检测的解析公式,这些公式对于在对撞机和光束目标实验中的搜索有效,并应用它们来估计对NA64,FASER,MATHUSLA,SHiP,T2K,DUNE和NA62的灵敏度的影响。 无背景情况。
2024-07-02 10:24:17 384KB Open Access
1