论文对比分析了人脸识别预处理过程中图像增强的处理算法,中值滤波和直方图均衡化。分析了OpenCV机器视觉库的优点和使用方法,在VC++6.0和Matlab开发环境下实现了所分析的算法,并在ORL人脸库上进行实验。实验结果表明文中所采用的算法处理人脸样本效果明显,具有较强的针对性,适合用于对人脸图像进行预处理,且OpenCV机器视觉库可以作为人脸识别系统的开发工具。
1
matlab机器视觉工具箱,hog,sift,gabor,光流法等源代码和图片,亲测能跑
2022-03-12 19:29:14 33.02MB hog sift gabor 光流法
1
为了克服核相关滤波(KCF)只根据目标外观模型追踪时准确性低的不足,融入运动模型,计算了检测目标框和预测目标框的交并比(IOU)。通过匈牙利算法,确定了目标间的最优关联。KCF和IOU模型都具有快速响应的特点,因此算法可满足在线处理数据的要求。在公开的2DMOT2015、MOT16数据集上进行实验,将所提方法与其他优秀方法相比,在保证30 frame/s以上处理速度的同时,追踪准确性提高10%以上。
2022-03-11 21:32:46 7.4MB 机器视觉 多目标跟 核相关滤 交并比
1
摘要:  智能交通系统中需要的关键数据为道路的占有率、车流量、行车速度等。本文介绍了基于TMS320DM642的数字图像车流量检测系统,阐明了该嵌入式视觉系统的硬件组成原理及软件结构和车流量检测算法。系统与现有的信号机联调测试,证明其稳定可靠、识别率高、体积小、成本低、实时性好,能实时检测十字路口道路的车流量信息。  关键词:TMS320DM642;数字视频处理;车流量检测;智能交通系统;虚拟线圈 引言   随着人口数量的增长,给交通带来的压力越来越大,智能交通系统成为近些年研究的热点。车流量检测是智能交通的基础部分,在系统中占有重要地位。目前有多种方法检测车流量,例如:电磁感应装置法和车
1
基于深度学习的目标检测技术在目标检测领域有强大的生命力,但是将其用于合成孔径雷达(SAR)图像舰船目标检测时并没有达到预期的效果。提出了一种基于卷积神经网络的SAR图像舰船目标检测算法用来检测多场景下的多尺度舰船目标,在单发多盒探测器检测框架的基础上,使用性能更好的Darknet-53作为特征提取网络,加入更深层次的特征融合网络,生成语义信息更加丰富的新的特征预测图。同时在训练策略上使用了一种新的二分类损失函数来解决训练过程中难易样本失衡的问题。在扩展的公开SAR图像舰船数据集上进行验证实验,实验结果表明,所提方法对复杂场景下不同尺寸的舰船目标的检测展现出了良好的适应性。
2022-03-11 16:04:01 14.29MB 机器视觉 合成孔径 神经网络 舰船目标
1
基于机器视觉的钢轨表面缺陷检测技术研究,
2022-03-11 14:46:01 17.28MB 钢轨表面缺陷
1
针对全卷积孪生(SiamFC)网络算法在相似目标共存和目标外观发生显著变化时跟踪失败的问题,提出一种基于注意力机制的在线自适应孪生网络跟踪算法(AAM-Siam)来增强网络模型的判别能力,实现在线学习目标外观变化并抑制背景。首先,分别在模板分支和搜索分支中加入前一帧跟踪所得到的结果,弥补网络在应对目标外观变化的不足;然后通过在孪生网络中加入空间注意力模块和通道注意力模块实现不同帧之间的特征融合,从而在线学习目标形变并抑制背景,进一步提升模型的特征表达能力;最后,在OTB和VOT2016跟踪基准库上进行实验。实验结果表明,本文算法在OTB50数据集上的精确度和平均成功率比基础算法SiamFC分别高出了4.3个百分点和3.6个百分点。
2022-03-11 13:53:36 8.75MB 机器视觉 孪生网络 注意力机 卷积神经
1
根据现代铁路自动检测技术对实时检测和适应性的要求,铁路表面缺陷的检测是铁路日常检查的重要组成部分。 本文提出了一种基于机器视觉的铁路表面缺陷实时检测方法。 根据机器视觉的基本原理,设计了一种配有LED辅助光源和遮光箱的图像采集装置,并设计了便携式测试模型进行现场实验。 考虑到实时性要求,无需进行图像预处理就可以实现从原始图像中提取目标区域的方法。 基于形态学过程对钢轨的表面缺陷进行了优化,并通过跟踪方向链代码获得了缺陷的特征。 结果表明,该方法的最大定位时间为4.65 ms,最大定位失败率为5%。 该方法的实时检测速度可以达到2 m / s,可以进行人工步行的实时检测,每张图片的处理时间高达245.61 ms,保证了图像的实时性能。便携式轨道缺陷视觉检查系统。 该系统在一定程度上可以代替人工检查,并对轨道缺陷进行数字化管理。
2022-03-10 12:45:49 256KB The detection of rail
1
本资源为某网站的高清PDF版机器视觉实用教程,主要内容包括机器视觉硬件知识,和软件知识,资料很详细,有400多页
2022-03-10 11:34:55 38.96MB 机器视觉
1
当前卷积神经网络结构未能充分考虑RGB图像和深度图像的独立性和相关性, 针对其联合检测效率不高的问题, 提出了一种新的双流卷积网络。将RGB图像和深度图像分别输入到两个卷积网络中, 两个卷积网络结构相同且权值共享, 经过数次卷积提取各自独立的特征后, 在卷积层根据最优权值对两个卷积网络进行融合;继续使用卷积核提取融合后的特征, 最后通过全连接层得到输出。相比于以往卷积网络对RGB-D图像采用的早期融合和后期融合方法, 在检测时间相近的情况下, 双流卷积网络检测的准确率和成功率分别提高了4.1%和3.5%。
2022-03-10 01:04:52 9.69MB 机器视觉 RGB-D 卷积神经 多模态信
1