matlab开发-casadioptistack。用ipopt和casadi求解大规模(参数化)NLP
2023-03-17 01:46:47 21KB 未分类
1
以微博为代表的社交平台是信息时代人们必不可少的交流工具.挖掘微博文本数据中的信息对自动问答、舆情分析等应用研究都具有重要意义.短文本数据的分类研究是短文本数据挖掘的基础.基于神经网络的Word2vec模型能很好的解决传统的文本分类方法无法解决的高维稀疏和语义鸿沟的问题.本文首先基于Word2vec模型得到词向量,然后将类别因素引入传统权重计算方法TF-IDF (Term Frequency-Inverse Document Frequency)设计词向量权重,进而用加权求和的方法得到短文本向量,最后用SVM分类器对短文本做分类训练并且通过微博数据实验验证了该方法的有效性.
2023-03-16 16:35:47 977KB Word2Vec 短文本分类 TF-IDF
1
matlab开发-FlightGearRouteManager。matlab函数访问FlightGear,远程控制飞机的航线并跟踪其位置
2023-03-16 15:38:19 8KB 未分类
1
ChattingRobot_RNN-master.zip
2023-03-16 11:48:12 36KB 文本分类 情感分析
1
matlab开发-smooth2。以用户定义的分辨率平滑二维矩阵中的数据。
2023-03-16 10:33:56 1KB 未分类
1
本次作业需要利用深度学习的方法对 10 类图片进行分类,图片类别及示例如图 1 所示。提供的数据包含 30000 张带类别标签的图片组成的训练集,和 5000 张无类别的测试集,需要用训练好的模型对测试集图片进行分类,并将结果生成 csv 文件上传提交。选用 python 编写网络架构,深度学习框架在 pytorch/tensorflow/caffe 中任选其一。
2023-03-16 09:46:52 17.77MB 图像分类 图像识别 计算机识别
1
matlab开发-NMEA0183读卡器。将nmea 0183句子读入matlab结构。
2023-03-15 18:02:48 3KB 未分类
1
著名的图片分类数据集,原版的在CSDN已经有很多了,这一个版本的是我将原版的数据集导出成图片格式,同时用json文件来标注图片的类别。 本资源只包含CIFAR-10数据集中的训练集(5万张图片),测试集在我上传的其他资源中有。 压缩包内需要包括png格式的图片源文件及同名的json格式标注文件,可直接导入EasyDL中使用。 关于本数据集的官方介绍,请参见: http://www.cs.toronto.edu/~kriz/cifar.html
2023-03-15 16:54:48 140.8MB CIFAR-10 深度学习 EasyDL 图像分类
1
2009年新书,非扫描 Contents List of Figures xiii List of Tables xix Introduction xxi About the Editors xxvii Contributor List xxix 1 Analysis of Text Patterns Using Kernel Methods 1 Marco Turchi, Alessia Mammone, and Nello Cristianini 1.1 Introduction . . . . . . . . . . . . . . . 1 1.2 General Overview on Kernel Methods . . . . . . . 1 1.2.1 Finding Patterns in Feature Space . . . . . . . . . . . 5 1.2.2 Formal Properties of Kernel Functions . . . . . . . . . 8 1.2.3 Operations on Kernel Functions . . . . . . . . . . . . 10 1.3 Kernels for Text . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Vector SpaceModel . . . . . . . . . . . . . . . . . . . 11 1.3.2 Semantic Kernels . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 String Kernels . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Conclusion and Further Reading . . . . . . . . . . . . . . . . 22 2 Detection of Bias in Media Outlets with Statistical Learning Methods 27 Blaz Fortuna, Carolina Galleguillos, and Nello Cristianini 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Overview of the Experiments . . . . . . . . . . . . . . . . . . 29 2.3 Data Collection and Preparation . . . . . . . . . . . . . . . . 30 2.3.1 Article Extraction from HTML Pages . . . . . . . . . 31 2.3.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 Detection of Matching News Items . . . . . . . . . . . 32 2.4 News Outlet Identification . . . . . . . . . . . . . . . . . . . . 35 2.5 Topic-Wise Comparison of Term Bias . . . . . . . . . . . . . 38 2.6 News OutletsMap . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6.1 Distance Based on Lexical Choices . . . . . . . . . . . 42 vii © 2009 by Taylor and Francis Group, LLC viii 2.6.2 Distance Based on Choice of Topics . . . . . . . . . . 43 2.7 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9 Appendix A: Support Vector Machines . . . . . . . . . . . . . 48 2.10 Appendix B: Bag of Words and Vector Space Models . . . . . 48 2.11 Appendix C: Kernel Canonical Correlation Analysis . . . . . 49 2.12 Appendix D: Multidimensional Scaling . . . . . . . . . . . . . 50 3 Collective Classification for Text Classification 51 Galileo Namata, Prithviraj Sen, Mustafa Bilgic, and Lise Getoor 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Collective Classification: Notation and Problem Definition . . 53 3.3 Approximate Inference Algorithms for Approaches Based on Local Conditional Classifiers . . . . . . . . . . . . . . . . . . . 53 3.3.1 Iterative Classification . . . . . . . . . . . . . . . . . . 54 3.3.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . 55 3.3.3 Local Classifiers and Further Optimizations . . . . . . 55 3.4 Approximate Inference Algorithms for Approaches Based on Global Formulations . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 Loopy Belief Propagation . . . . . . . . . . . . . . . . 58 3.4.2 Relaxation Labeling via Mean-Field Approach . . . . 59 3.5 Learning the Classifiers . . . . . . . . . . . . . . . . . . . . . 60 3.6 Experimental Comparison . . . . . . . . . . . . . . . . . . . . 60 3.6.1 Features Used . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.2 Real-World Datasets . . . . . . . . . . . . . . . . . . . 60 3.6.3 Practical Issues . . . . . . . . . . . . . . . . . . . . . . 63 3.7 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Topic Models 71 David M. Blei and John D. Lafferty 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . 72 4.2.1 Statistical Assumptions . . . . . . . . . . . . . . . . . 73 4.2.2 Exploring a Corpus with the Posterior Distribution . . 75 4.3 Posterior Inference for LDA . . . . . . . . . . . . . . . . . . . 76 4.3.1 Mean Field Variational Inference . . . . . . . . . . . . 78 4.3.2 Practical Considerations . . . . . . . . . . . . . . . . . 81 4.4 Dynamic Topic Models and Correlated Topic Models . . . . . 82 4.4.1 The Correlated Topic Model . . . . . . . . . . . . . . 82 4.4.2 The Dynamic Topic Model . . . . . . . . . . . . . . . 84 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 © 2009 by Taylor and Francis Group, LLC ix 5 Nonnegative Matrix and Tensor Factorization for Discussion Tracking 95 Brett W. Bader, Michael W. Berry, and Amy N. Langville 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1.1 Extracting Discussions . . . . . . . . . . . . . . . . . . 96 5.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Tensor Decompositions and Algorithms . . . . . . . . . . . . 98 5.3.1 PARAFAC-ALS . . . . . . . . . . . . . . . . . . . . . 100 5.3.2 Nonnegative Tensor Factorization . . . . . . . . . . . . 100 5.4 Enron Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.1 TermWeighting Techniques . . . . . . . . . . . . . . . 103 5.5 Observations and Results . . . . . . . . . . . . . . . . . . . . 105 5.5.1 Nonnegative Tensor Decomposition . . . . . . . . . . . 105 5.5.2 Analysis of Three-Way Tensor . . . . . . . . . . . . . 106 5.5.3 Analysis of Four-Way Tensor . . . . . . . . . . . . . . 108 5.6 Visualizing Results of the NMF Clustering . . . . . . . . . . . 111 5.7 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Text Clustering with Mixture of von Mises-Fisher Distributions 121 Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Suvrit Sra 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.1 The von Mises-Fisher (vMF) Distribution . . . . . . . 124 6.3.2 Maximum Likelihood Estimates . . . . . . . . . . . . . 125 6.4 EMon aMixture of vMFs (moVMF) . . . . . . . . . . . . . . 126 6.5 Handling High-Dimensional Text Datasets . . . . . . . . . . . 127 6.5.1 Approximating κ . . . . . . . . . . . . . . . . . . . . . 128 6.5.2 Experimental Study of the Approximation . . . . . . . 130 6.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 134 6.7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 138 6.7.3 Simulated Datasets . . . . . . . . . . . . . . . . . . . . 138 6.7.4 Classic3 Family of Datasets . . . . . . . . . . . . . . . 140 6.7.5 Yahoo News Dataset . . . . . . . . . . . . . . . . . . . 143 6.7.6 20 Newsgroup Family of Datasets . . . . . . . . . . . . 143 6.7.7 Slashdot Datasets . . . . . . . . . . . . . . . . . . . . 145 6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 148 © 2009 by Taylor and Francis Group, LLC x 7 Constrained Partitional Clustering of Text Data: An Overview 155 Sugato Basu and Ian Davidson 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.2 Uses of Constraints . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.1 Constraint-Based Methods . . . . . . . . . . . . . . . 157 7.2.2 Distance-BasedMethods . . . . . . . . . . . . . . . . . 158 7.3 Text Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 161 7.3.2 DistanceMeasures . . . . . . . . . . . . . . . . . . . . 162 7.4 Partitional Clustering with Constraints . . . . . . . . . . . . 163 7.4.1 COP-KMeans . . . . . . . . . . . . . . . . . . . . . . . 163 7.4.2 Algorithms with Penalties – PKM, CVQE . . . . . . . 164 7.4.3 LCVQE: An Extension to CVQE . . . . . . . . . . . . 167 7.4.4 Probabilistic Penalty – PKM . . . . . . . . . . . . . . 167 7.5 Learning Distance Function with Constraints . . . . . . . . . 168 7.5.1 Generalized Mahalanobis Distance Learning . . . . . . 168 7.5.2 Kernel Distance Functions Using AdaBoost . . . . . . 169 7.6 Satisfying Constraints and Learning Distance Functions . . . 170 7.6.1 Hidden Markov Random Field (HMRF) Model . . . . 170 7.6.2 EMAlgorithm . . . . . . . . . . . . . . . . . . . . . . 173 7.6.3 Improvements to HMRF-KMeans . . . . . . . . . . . 173 7.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.7.2 Clustering Evaluation . . . . . . . . . . . . . . . . . . 175 7.7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . 176 7.7.4 Comparison of Distance Functions . . . . . . . . . . . 176 7.7.5 Experimental Results . . . . . . . . . . . . . . . . . . 177 7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8 Adaptive Information Filtering 185 Yi Zhang 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.2 Standard EvaluationMeasures . . . . . . . . . . . . . . . . . 188 8.3 Standard Retrieval Models and Filtering Approaches . . . . . 190 8.3.1 Existing Retrieval Models . . . . . . . . . . . . . . . . 190 8.3.2 Existing Adaptive Filtering Approaches . . . . . . . . 192 8.4 CollaborativeAdaptive Filtering . . . . . . . . . . . . . . . . 194 8.5 Novelty and Redundancy Detection . . . . . . . . . . . . . . . 196 8.5.1 Set Difference . . . . . . . . . . . . . . . . . . . . . . . 199 8.5.2 Geometric Distance . . . . . . . . . . . . . . . . . . . 199 8.5.3 Distributional Similarity . . . . . . . . . . . . . . . . . 200 8.5.4 Summary of Novelty Detection . . . . . . . . . . . . . 201 8.6 Other Adaptive Filtering Topics . . . . . . . . . . . . . . . . 201 8.6.1 Beyond Bag ofWords . . . . . . . . . . . . . . . . . . 202 © 2009 by Taylor and Francis Group, LLC xi 8.6.2 Using Implicit Feedback . . . . . . . . . . . . . . . . . 202 8.6.3 Exploration and Exploitation Trade Off . . . . . . . . 203 8.6.4 Evaluation beyond Topical Relevance . . . . . . . . . 203 8.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 204 9 Utility-Based Information Distillation 213 Yiming Yang and Abhimanyu Lad 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 9.1.1 Related Work in Adaptive Filtering (AF) . . . . . . . 213 9.1.2 Related Work in Topic Detection and Tracking (TDT) 214 9.1.3 Limitations of Current Solutions . . . . . . . . . . . . 215 9.2 A Sample Task . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.3 Technical Cores . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.3.1 Adaptive Filtering Component . . . . . . . . . . . . . 218 9.3.2 Passage Retrieval Component . . . . . . . . . . . . . . 219 9.3.3 Novelty Detection Component . . . . . . . . . . . . . 220 9.3.4 Anti-Redundant Ranking Component . . . . . . . . . 220 9.4 EvaluationMethodology . . . . . . . . . . . . . . . . . . . . . 221 9.4.1 Answer Keys . . . . . . . . . . . . . . . . . . . . . . . 221 9.4.2 Evaluating the Utility of a Sequence of Ranked Lists . 223 9.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 9.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 226 9.6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . 226 9.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 229 9.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 229 10 Text Search-Enhanced with Types and Entities 233 Soumen Chakrabarti, Sujatha Das, Vijay Krishnan, and Kriti Puniyani 10.1 Entity-Aware Search Architecture . . . . . . . . . . . . . . . . 233 10.1.1 Guessing Answer Types . . . . . . . . . . . . . . . . . 234 10.1.2 Scoring Snippets . . . . . . . . . . . . . . . . . . . . . 235 10.1.3 Efficient Indexing and Query Processing . . . . . . . . 236 10.1.4 Comparison with Prior Work . . . . . . . . . . . . . . 236 10.2 Understanding the Question . . . . . . . . . . . . . . . . . . . 236 10.2.1 Answer Type Clues in Questions . . . . . . . . . . . . 239 10.2.2 Sequential Labeling of Type Clue Spans . . . . . . . . 240 10.2.3 From Type Clue Spans to Answer Types . . . . . . . . 245 10.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . 247 10.3 Scoring Potential Answer Snippets . . . . . . . . . . . . . . . 251 10.3.1 A ProximityModel . . . . . . . . . . . . . . . . . . . . 253 10.3.2 Learning the Proximity Scoring Function . . . . . . . 255 10.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . 257 10.4 Indexing and Query Processing . . . . . . . . . . . . . . . . . 260 © 2009 by Taylor and Francis Group, LLC xii 10.4.1 Probability of a Query Atype . . . . . . . . . . . . . . 262 10.4.2 Pre-Generalize and Post-Filter . . . . . . . . . . . . . 262 10.4.3 Atype Subset Index Space Model . . . . . . . . . . . . 265 10.4.4 Query Time BloatModel . . . . . . . . . . . . . . . . 266 10.4.5 Choosing an Atype Subset . . . . . . . . . . . . . . . . 269 10.4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . 271 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 10.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 272 10.5.2 Ongoing and Future Work . . . . . . . . . . . . . . . . 273 © 2009
2023-03-15 13:41:22 4.35MB 文本挖掘 分类 聚类
1
使用Bert进行文本二分类实验用的训练数据文件,仅限学习使用。
2023-03-15 10:19:54 128KB 文本分类 Bert
1