准确及时的每月降雨量预报是水文研究等科学界面临的主要挑战,例如河流管理项目和洪水预警系统的设计。 支持向量回归(SVR)是一个非常有用的降水预测模型。 本文提出了一种新的并行协同进化算法,基于遗传算法和粒子群优化算法SVRGAPSO的并行协同进化,可以确定SVR在降雨预测中的合适参数,用于月降水预测。 并行协同进化算法的框架是同时迭代两个GA和PSO种群,这是GA和PSO种群之间进行信息交换以克服过早的局部最优的一种机制。 我们的方法采用混合PSO和GA,通过并行协同发展来获得SVR的最佳参数。 所提出的技术可用于降雨预报,以测试其概括能力并与几种竞争技术进行比较评估,例如其他替代方法,即SVRPSO(带PSO的SVR),SVRGA(带GA的SVR)和SVR模型。 实证结果表明,SVRGAPSO结果具有较好的泛化能力,在降雨预报中具有最低的预测误差值。 SVRGAPSO可以显着提高降雨预报的准确性。 因此,SVRGAPSO模型是降雨预报的有希望的替代方法。
2021-11-13 12:10:28 1.43MB 行业研究
1
为了提高人脸识别的准确率,提出了一种基于K近邻(KNN)和粒子群优化(PSO)的人脸识别方法。运用局部二值模式(LBP)提取特征,研究了遗传算法(GA)、粒子群算法(PSO)、蚁群算法(ACO)等元启发式优化算法在特征选择中的应用,采用基于种群的元启发式算法PSO对KNN分类器进行优化,利用提出的PSO-KNN算法进行人脸识别。使用罗技网路摄影头和ORL人脸数据库,对155位受试者的10个方位的实时脸部影像进行了实验。将提出的算法与决策表(DT)、支持向量机(SVM)、多层感知器(MLP)和传统的KNN等基准识别技术进行了比较,实验结果验证了所提方法的有效性。
2021-11-12 18:08:16 1.75MB 人脸识别 遗传算法 粒子群优化 KNN
1
多下载 我需要分数 下载别的东西 感谢各位帮助 多下载 我需要分数 下载别的东西 感谢各位帮助
2021-11-11 17:23:21 1KB 一维PSO
1
PSO源程序资料.pdf
2021-11-11 17:10:08 56KB
matlab代码粒子群算法合作PSO-LA 基于学习自动机(CPSOLA)算法和Matlab的协同粒子群优化算法的Matlab代码。 抽象的 本文提出了一种基于群体协同行为和自动机学习能力的粒子群优化(PSO)技术。 这种方法称为基于学习自动机的合作粒子群优化(CPSOLA)。 CPSOLA算法使用三层协作:群内,群内和群间。 CPSOLA中有两个活跃的种群。 在主要种群中,粒子被放置在所有群体中,每个群体都包含搜索空间的多个维度。 此外,CPSOLA中还有一个二级人口,使用的是常规PSO的更新格式。 在合作的上层,嵌入式学习自动机(LA)负责决定是否在人群之间进行合作。 在五个基准功能上组织了实验,结果显示了CPSOLA的显着性能和鲁棒性,群体的协作行为以及成功的种群自适应控制。 参考 [1] Mohammad Hasanzadeh,Mohammad Reza Meybodi和Mohammad Mehdi Ebadzadeh,“”,在2012年第20届伊朗电气工程大会(ICEE)上,2012年,第656至661页。 [2] Mohammad Hasanzadeh,Mohammad R
2021-11-11 14:36:57 11KB 系统开源
1
matlab代码粒子群算法动态PSO-LA 基于三动作学习自动机(DPSOLA)算法的动态全局和局部组合粒子群优化算法的Matlab代码。 抽象的 最近已经开发了许多粒子群优化(PSO)算法的变体,其最大目的是摆脱局部极小值。 这些最新变化之一是PSO-LA模型,该模型采用控制粒子速度的学习自动机(LA)。 PSO的另一个变体使粒子能够动态搜索全局和局部空间。 本文提出了一种基于三动作学习自动机(DPSOLA)的动态全局和局部组合粒子群优化算法。 嵌入式学习自动机累积来自个体,局部最佳粒子和全局最佳粒子的信息,然后将它们组合以在问题空间中导航粒子。 所提出的算法已经在具有不同维度的八个基准函数上进行了测试。 从测试台来看,这项工作是独一无二的。 评估包含较大的人口规模(150)和较高的维度(150)。 结果表明,适应度和收敛速度优于传统的PSO,DGLCPSO和以前的基于PSO的LA算法。 参考 [1] Mohammad Hasanzadeh,Mohammad Reza Meybodi和Saeed Shiry Ghidary,“,”在2011 IEEE第12届国际计算智能和信息学研讨会
2021-11-11 11:14:41 8KB 系统开源
1
hybrid PSO-WPA optimization of software defects on DNN
2021-11-10 18:12:51 761KB deeplearning swarmintelligen
1
PSO(粒子群算法)应用到TSPTW问题(时间窗车辆调度问题)上
2021-11-09 20:33:12 7KB pso 优化调度 车辆调度
1
PSO功能选择 用于特征选择的粒子群优化(PSO)。 使用PySwarm。
2021-11-07 20:26:46 75KB JupyterNotebook
1
13种粒子群优化算法,包括协同,混合,局部,全局,繁殖等,对应的博客地址http://www.cnblogs.com/hxsyl/p/4521778.html
2021-11-06 16:23:05 8KB PSO 粒子群 优化
1