不断提高的汽车电子系统对传输带宽的迫切需求促进了车载以太网技术发展,基于车载以太网的诊断技术DoIP(Diagnostic communication over Internet Protocol)在此背景下应运而生。 ISO 13400系列标准定义了DoIP技术应用场景及实施细节。
2022-06-10 18:04:53 1.25MB DoIP Ethernet
1
针对现有煤矿机械在线监测与诊断技术未实现故障特征在线提取及故障类型自动识别的问题,设计了一种基于LabVIEW的煤矿旋转机械故障在线诊断及预警系统。该系统采用频谱分析、功率谱分析、包络谱分析、倒频谱分析等方法分析振动信号,得到旋转机械运行过程中各部件的特征参数,与故障类型数据库里的特征参数进行对比,实现故障诊断。设计了精细诊断和粗略诊断2种故障诊断模式,通过互锁的方式将2种模式关联起来,若旋转机械各主要部件结构参数已知,可选用精细诊断模式,否则选用粗略诊断模式。通过模拟旋转机械转子不平衡故障验证系统性能,结果表明,该系统能够准确识别故障并发出提示,且操作简单、可靠性高。
2022-06-10 17:17:06 1.97MB 行业研究
1
基于卷积神经网络的轴承故障诊断算法模型研究源代码。 main为wdcnn卷积神经网络主文件,运行它就可以 preprocess为预处理文件,主要实现制作数据集的功能 日志文件保存在logs里面,通过启动tensorboard查看 wdcnn.png为卷积神经网络的结构图像 基于卷积神经网络的轴承故障诊断算法模型研究源代码。 main为wdcnn卷积神经网络主文件,运行它就可以 preprocess为预处理文件,主要实现制作数据集的功能 日志文件保存在logs里面,通过启动tensorboard查看 wdcnn.png为卷积神经网络的结构图像 基于卷积神经网络的轴承故障诊断算法模型研究源代码。 main为wdcnn卷积神经网络主文件,运行它就可以 preprocess为预处理文件,主要实现制作数据集的功能 日志文件保存在logs里面,通过启动tensorboard查看 wdcnn.png为卷积神经网络的结构图像
2022-06-10 09:10:55 45.22MB 人工智能 cnn 卷积神经网络 深度学习
LeakDB(泄漏诊断基准)是用于配水网络的真实泄漏数据集。该数据集包含大量人工创建但现实的泄漏场景,在不同的配水网络上,在不同的条件下。提供了 MATLAB 代码中的评分算法来评估不同算法的结果
2022-06-07 18:06:52 73.99MB 网络 matlab 开发语言
软件介绍: VAG Vehicle Diagnostics Interface即VVDI,它是VGA车辆诊断接口软件的简称,使用时需要连接硬件设备。功能包括钥匙学习系统,诊断控制单元,发动机控制单元及K线仪表里程调校,匹配控制单元,EEPROM数据处理工具。遥控钥匙芯片编程,防盗数据处理工具,遥控频率测试生成工具。
2022-06-06 21:39:29 65.09MB 其他资源
1
航空维修手册应用分析及故障诊断数据库设计_doc
2022-06-06 14:07:11 1.32MB 文档资料 数据库 database
[企业政府]医院网站+在线诊断系统_xcyy(ASP.NET源码).rar
2022-06-06 11:00:32 3.11MB 互联网 asp.net源码

通过分析设备故障诊断与维修所面临的主要问题以及当前常用诊断策略存在的局限性, 研究
基于贝叶斯网络的故障诊断策略优化方法。提出了适合于表达诊断问题的基于故障假设2观测2维修操
作节点的贝叶斯网络结构, 阐述了基于贝叶斯网络的故障诊断策略优化方法的基本思想和优化算法。 该
方法综合考虑了多故障、 有观测操作以及操作之间有依赖关系等情况。最后通过应用实例, 证实了该方
法在信息不确定条件下进行诊断与维修决策的有效性。

1
针对可拓神经刚络无法解决多故障珍断的问题,建立问题模型,将多故障诊断问题转化为多特征样本的聚类问题。从模型结构和学习算法两个方面对ENN2进行改进,提出基于改进ENN2聚类算法的多故障诊断方法,并对其参数和时间复杂度进行分析采用工程实例对所提提的方法进行验证,结果表明,所提出的方法能够解决离线的多故障诊断问题,且得到的诊断模型可用于在线状态监控,具有较好的应用前景。
2022-06-06 09:33:02 452KB 自然科学 论文
1
python基于深度学习的肿瘤辅助诊断系统源码。基于深度学习的肿瘤辅助诊断系统,以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的模型构建、后端架设和前端访问功能。系统以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的模型构建、后端架设和前端访问功能。 医生只需通过web上传ct图像文件,后台就会使用训练好的模型进行肿瘤区域的分割,然后将勾画好肿瘤区域的图像返回,还有肿瘤区域的一些特征(如面积、周长、强度等),并且提供前几次诊断的特征数据并绘制成图表进行对比来辅助医生诊断。系统以图像分割为核心,利用人工智能完成肿瘤区域的识别勾画并提供肿瘤区域的特征来辅助医生进行诊断。有完整的模型构建、后端架设和前端访问功能。 医生只需通过web上传ct图像文件,后台就会使用训练好的模型进行肿瘤区域的分割,然后将勾画好肿瘤区域的图像返回,还有肿瘤区域的一些特征(如面积、周长、强度等),并且提供前几次诊断的特征数据并绘制成图表进行对比来辅助医生诊断。
2022-06-05 21:06:02 3.52MB python 源码软件 深度学习 人工智能