决策树分类作为一种基于空间数据挖掘的知识发现的监督分类方法,它通过决策学习过程得到分类规则并对遥感影像进行分类,突破了以往分类树或分类规则的构建要利用分类者的生态学和遥感先验知识的确定。而C5.0算法作为最为前沿的决策树算法,目前尚没有一款基于它的遥感影像分类软件。基于此,我们以C5.0决策树算法为基础,通过算法改进,创建了适用于遥感影像分类的决策树算法GLC树,进并依托C#+ArcEngine平台设计实现了GLC_Info v1.0,该软件具有指数变换、样本点的选取、训练集的生成、规则集的建立、影像分类、分类图后编辑等一系列功能,通过这些功能我们为广大用户提供了一款简洁、实用、快速、高精度的遥感影像分类软件。
2021-10-24 09:45:50 2.11MB 决策树 C5.0 分类 遥感
1
决策树又称为判定树,是运用于分类的一种树结构,其中的每个内部节点代表对某一属性的一次测试,每条边代表一个测试结果,叶节点代表某个类或类的分布
2021-10-23 20:04:39 2.18MB Decision Tree ppt
1
本文件包含了论文的PDF和word版本、提供了完整的程序,赛题的题目和原始数据也在文件包中。如果订购后还有问题,请私信联系我
2021-10-23 09:10:04 5.1MB 数学建模 决策树 肿瘤疾病 江西省
该论文已经获得2021年江西省研究生三等奖。内容的中数据分析、特征工程、第一问模型已经在博客中给出https://betterbench.blog.csdn.net/article/details/118441901 具体论文的word和PDF版本以及完整的实现程序代码,可在购买此资源后获得。另外的平台购买地址https://mianbaoduo.com/o/bread/YZ6Xm59w
2021-10-22 09:09:32 3.93MB 数学建模 研究生 肿瘤疾病 决策树
众所周知中文普通话被众多的地区口音强烈地影响着,然而带不同口音的普通话语音数据却十分缺乏。因此,普通话语音识别的一个重要目标是恰当地模拟口音带来的声学变化。文章给出了隐式和显式地使用口音信息的一系列基于深度神经网络的声学模型技术的研究。与此同时,包括混合条件训练,多口音决策树状态绑定,深度神经网络级联和多级自适应网络级联隐马尔可夫模型建模等的多口音建模方法在本文中被组合和比较。一个能显式地利用口音信息的改进多级自适应网络级联隐马尔可夫模型系统被提出,并应用于一个由四个地区口音组成的、数据缺乏的带口音普通话语音识别任务中。在经过序列区分性训练和自适应后,通过绝对上0.8%到1.5%(相对上6%到9%)的字错误率下降,该系统显著地优于基线的口音独立深度神经网络级联系统。
1
决策树分类matlab代码应用机器学习和数据科学食谱-面向初学者的数据科学编码训练营 使用Python,R和MATLAB的应用机器学习和数据科学 适用于应用机器学习和数据科学的Python,R和MATLAB代码列表 应用机器学习和数据科学的7个步骤: 通过编码分类学习: 分类: 数据分析: 数据科学: 数据可视化: 机器学习食谱: 熊猫: Python: SKLEARN: 监督学习: 表格数据分析: 端到端数据科学食谱: 应用统计: 套袋乐团: 促进合奏: CatBoost: 聚类: 数据分析: 数据科学: 数据可视化: 决策树: LightGBM: 机器学习食谱: 多类别分类: 神经网络: Python机器学习: Python机器学习速成课程: R分类: R对于初学者: R for Business Analytics: R for Data Science: 用于数据可视化的R: 适用于Excel用户的R: R机器学习: R机器学习速成课程: R回归: 回归: XGBOOST: 有抱负的数据科学家的项目组合项目:表格文本和图像数据分析以及Python和R @中的时间序列预测 西澳大
2021-10-19 16:49:27 1KB 系统开源
1
根据CART算法使用python构建决策树(效果和sklearn类似)
2021-10-18 17:11:55 7KB 决策树 机器学习 python sklearn
1
graphviz-2.38安装文件.zip
2021-10-18 16:02:32 31.89MB 机器学习 决策树
1
决策树二分类matlab代码这是用于使用决策森林框架[1](在下文中称为Sherwood)进行分类的MATLAB包装器。 培训和分类是并行的。 入门 需要MATLAB和c ++编译器。 根据Sherwood的许可,您必须下载并将其放在/ Sherwood /中。 使用“ mex -setup”设置MATLAB。 example.m中提供了一个示例 所有文件都会自动编译 该代码已经过测试 在Ubuntu 13.10上具有GCC 4.8的MATLAB 2013a。 Windows 7上具有Visual Studio 2013的MATLAB 2013a 局限性 如果使用不支持OpenMP的c ++编译器,则需要通过在sherwood_train.m中设置“ use_openmp = false”来关闭多线程训练。 遗憾的是,Mathworks for Windows建议的c ++编译器不支持OpenMP。 但是,Visual Studio支持它。 备择方案 对于MATLAB [2,3],至少有两种流行的随机森林实现。 与舍伍德的主要区别是 没有套袋,因此不会出现袋外错误等。 叶子中的概率存储
2021-10-17 23:04:37 106KB 系统开源
1
主要为大家详细介绍了python利用sklearn包编写决策树源代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2021-10-17 19:57:09 62KB python 决策树
1