BRSMM 类实现了用于模拟和估计有限简单混合模型参数的算法。 简单模型,例如潜在狄利克雷分配 (LDA) 模型,通常用于基于文本的信息检索,例如,根据单词统计为语料库中的每个文档指定主题时。 BRSMM 类是 LDA 对连续数据的扩展。 它专为包含异常值和/或缺失值的数据而设计。 BRSMM 对象将每个主题建模为具有特定主题参数的重尾分布的混合。 根据贝叶斯范式,参数配备了共轭先验分布。 该模型还包含表示数据中缺失值和数据质量的隐藏变量。 参数和隐藏变量的后验分布通过近似变分推理算法进行估计。 此提交包括一个测试函数,该函数生成一组合成数据并从这些数据中学习模型。 测试函数还绘制根据模型聚类的数据,以及每次迭代后数据的边际对数似然的变分下界。 如果您发现此提交对您的研究/工作有用,请引用我的 MathWorks 社区资料。 如果您有任何技术或应用相关问题,请随时直接与我联系。
2022-08-29 15:26:31 19KB matlab
1
新考纲pmp学习总结,不用查看pmp书集3A通过。含敏捷,混合型,计算题,解题思路,难点讲解
2022-08-29 14:04:47 6.27MB pmp 项目管理
1
混合微电路技术手册材料、工艺、设计、试验和生产,介绍了混合微电路 微组装 LTCC 薄膜
2022-08-26 23:34:48 58.62MB 混合 微电路 微组装 LTCC
1
HBuilderX.3.2.9.20210927 XYAZ-Setup-8.0.3-ha8dc59094
2022-08-26 14:04:53 764.57MB 安卓
1
传统的K-modes算法采用简单的属性匹配方式计算同一属性下不同属性值的距离,并且计算样本距离时令所有属性权重相等。在此基础上,综合考虑有序型分类数据中属性值的顺序关系、无序型分类数据中不同属性值之间的相似性以及各属性之间的关系等,提出一种更加适用于混合型分类数据的改进聚类算法,该算法对无序型分类数据和有序型分类数据采用不同的距离度量,并且用平均熵赋予相应的权重。实验结果表明,改进算法在人工数据集和真实数据集上均有比K-modes算法及其改进算法更好的聚类效果。
2022-08-21 23:37:28 527KB 论文研究
1
CMOS混合信号电路设计
2022-08-21 18:04:02 14MB 模拟IC
1
前言 学习中如果碰到问题,参考官网例子: D:\boost_1_61_0\libs\python\test 参考:Boost.Python 中英文文档。 利用Boost.Python实现Python C/C++混合编程 关于python与C++混合编程,事实上有两个部分 extending 所谓python 程序中调用c/c++代码, 其实是先处理c++代码, 预先生成的动态链接库, 如example.so, 而在python代码中import example;即可使用c/c++的函数 . embedding c++代码中调用 python 代码. 两者都可以用 python c
2022-08-17 08:45:23 94KB base num python
1
改善败血症治疗策略 这是论文“使用深度强化学习和专家混合改善脓毒症治疗策略”的代码库 评论者评论 表1中的数据清楚地显示了数据集幸存者/非幸存者的失衡率。 学习不平衡会导致分类器的预测模型出现偏差。 但是,作者没有详细说明他们如何通过使用特定的重新平衡方法或对成本敏感的学习方法来解决此问题,但未提供任何评论。 数据集分为固定的75%训练和验证集和25%的测试集。“->作者应使用10倍交叉验证。 如表2所示,尽管他们的专家混合(MoE)方法的性能在数值上优于医师,内核和DQN的性能,但分析这种数值增加的显着性还是不错的。 随机策略会产生什么效果? 有没有一种方法可以衡量这些方法之间的性能差异的重要性? 本文未介绍其方法的任何时间性能。 训练这种方法需要多长时间? 这个培训时间对于为ICU患者制定个性化治疗策略是否可行? RL和Deep网络都因训练时间长而臭名昭著。 动机 败血症是IC
2022-08-16 14:27:18 478KB JupyterNotebook
1
应用于光子集成的硅基混合集成人工微结构硅波导输出激光器研究
2022-08-13 12:15:20 1024KB 研究论文
1