1、yolov3车辆行人检测,包含yolov3训练好的车辆行人检测权重以及PR曲线,loss曲线等等,map达90% 多,在一万多张交通场景行人车辆数据集中训练得到的权重,目标类别为person和car 共2个类别,并附5000多张行人车辆检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,python代码,可以和YOLOv5共用一个环境,配置好环境就可以加载已经训练好的模型直接进行测试,得出结果
yolov5火焰烟雾检测数据集,烟雾和火焰数据集和源码(包含视频和图片素材,可直接进行推理测试)。1、项目是训练过的,可直接进行推力测试。 2、项目包含烟雾和火焰的数据集,已标记好! 3、如果想想重新训练也可以。 4、可以直接用训练好的权重pt文件进行推力测试,测试视频和图片都可以,很好用。 5、价格绝对是优惠价,可以放心下载
YOLOV5火灾火焰烟雾检测数据集+代码+训练好的模型+标注好的数据+pyqt界面+代码。烟雾和火焰数据集和源码(包含视频和图片素材,可直接进行推理测试)。1、项目是训练过的,可直接进行推力测试。 2、项目包含烟雾和火焰的数据集,已标记好! 3、如果想想重新训练也可以。 4、可以直接用训练好的权重pt文件进行推理 YOLOV5火灾火焰烟雾检测数据集+代码+训练好的模型+标注好的数据+pyqt界面+代码。烟雾和火焰数据集和源码(包含视频和图片素材,可直接进行推理测试)。1、项目是训练过的,可直接进行推力测试。 2、项目包含烟雾和火焰的数据集,已标记好! 3、如果想想重新训练也可以。 4、可以直接用训练好的权重pt文件进行推理
基于pytorch深度学习框架,实用开源模型yolov4实现模板检测与yolov5实现车牌检测与LPRNet实现车牌检测 基于pytorch深度学习框架,实用开源模型yolov4实现模板检测与yolov5实现车牌检测与LPRNet实现车牌检测 基于win10系统,实用anaconda配置python环境,在anaconda里面下载vscode对项目进行编辑,基于pytorch深度学习框架,实用开源模型yolov4实现模板检测与yolov5实现车牌检测与LPRNet实现车牌检测 基于pytorch深度学习框架,实用开源模型yolov4实现模板检测与yolov5实现车牌检测与LPRNet实现车牌检测 基于win10系统,实用anaconda配置python环境,在anaconda里面下载vscode对项目进行编辑
YOLO车辆检测数据集+对任意车辆图片进行车辆检测和型号分类的识别系统。对数据集中部分图片使用LabelImg工具进行了Bounding Box标注,使用MobileNet模型的SSD检测框架,借助其预训练模型并利用这些标注图片,训练和实现了车辆的位置检测模型;训练并调优了InceptionV4模型实现对车辆类型的分类;将位置检测结果的裁剪子图送入型号分类模型,以此完成对两个模型串行的衔接,并最终形成了一套完整的可以运行演示的web产品。YOLO车辆检测数据集+对任意车辆图片进行车辆检测和型号分类的识别系统。对数据集中部分图片使用LabelImg工具进行了Bounding Box标注,使用MobileNet模型的SSD检测框架,借助其预训练模型并利用这些标注图片,训练和实现了车辆的位置检测模型;训练并调优了InceptionV4模型实现对车辆类型的分类;将位置检测结果的裁剪子图送入型号分类模型,以此完成对两个模型串行的衔接,并最终形成了一套完整的可以运行演示的web产品。
1、yolov5水果新鲜程度检测,包含yolov5s和yolov5m两种训练好的水果好坏检测权重,有pyqt界面,目标类别为apple、bad banana、banana和bad apple 共4个类别,并附有几百张水果新鲜程度检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,python代码
2022-05-25 11:07:14 159.92MB YOLO水果识别 水果检测
1、yolov5车辆行人检测,包含yolov5s和yolov5m两种训练好的车辆行人检测权重,在一万多张交通场景行人车辆数据集中训练得到的权重,有pyqt界面,目标类别为person和car 共2个类别,并附5000多张行人车辆检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、pyqt界面可以 检测图片、视频和调用摄像头,有相应的选择项 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
行人检测数据集——pascalvoc格式
2022-05-25 11:07:10 180.63MB 行人检测数据集
1
1、yolov5水果新鲜程度检测,包含yolov5s和yolov5m两种训练好的水果好坏检测权重,有pyqt界面,目标类别为apple、bad banana、banana和bad apple 共4个类别,并附有几百张水果新鲜程度检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、pyqt界面可以 检测图片、视频和调用摄像头,有相应的选择项 3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 4、采用pytrch框架,python代码
1、YOLOv3水果新鲜程度检测,包含YOLOv3训练好的水果好坏检测权重,目标类别为apple、bad banana、banana和bad apple 共4个类别,并附有几百张水果新鲜程度检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中 2、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/124230743 3、采用pytrch框架,python代码