基于Python的人脸识别课堂考勤系统(毕设)资料包,包内包含项目: 1.系统源码 2.GUI文件 3.数据库表文件 4.转换的GUI.py脚本文件 。。。。。。。。
2022-12-19 19:18:55 25.63MB python 人脸识别 考勤系统 毕业设计
1
毕业设计基于Haar特征与AdaBoost算法的人脸检测系统源码+使用说明.zip已获导师指导并通过的高分项目。 毕业设计基于Haar特征与AdaBoost算法的人脸检测系统源码+使用说明.zip已获导师指导并通过的高分项目。 毕业设计基于Haar特征与AdaBoost算法的人脸检测系统源码+使用说明.zip已获导师指导并通过的高分项目。 毕业设计基于Haar特征与AdaBo ======================================== 训练样本: MIT人脸数据库 样本尺寸:20*20px 样本个数:5971个样本,其中人脸样本为2429个 faces文件夹 包含人脸样本 nonfaces文件夹 包含非人脸样本 ======================================== 测试样本: 加州理工大学 人脸数据库 样本尺寸:896*592px 包含450个样本 faces_test文件夹 (程序剔除了部分非人脸样本,实际检测样本数约为440个) ========================================
基于深度学习的ARM平台实时人脸识别
2022-12-19 12:32:05 1.35MB 基于 深度学习 arm 平台
1
python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。
通过调用摄像头捕获人脸,通过比对实现人脸识别
2022-12-18 22:32:51 810B t'
1
机器学习课程设计 人脸识别完整Matlab源码+项目说明.zip 【功能实现】 1.信息隐藏 2.信息解码 3.人脸识别 【注意】 不要改变文件结构!!,.exe文件在exe里,生成的图片及.mat在generated_photo里,一张典例图片在example_photo里,image里是一些README文档需要的照片,resource里的是一些依赖文件,不要动!
基于Opencv+Pyqt5+python实现人脸互换人脸融合人脸特效人脸生成多功能系统完整源码+代码注释+项目说明.zip, 带【GUI界面】 【项目说明】 主要是利用Opencv提供的函数在人脸上实现多功能的特效 在本项目中,实现了一个多功能美颜相机,其中实现了对人脸数据的十种处理:人脸互换(faceswap)、人脸融合(facemorph),人脸特效,人脸检测,人脸美颜,人脸磨皮,调节亮度,调节饱和度,滤镜,风格变换等功能。 本次项目全部使用 Python 编写,在项目设计上遵循着配置灵活、代码模块化的思路,其中功能模块分为调节美颜,人脸识别,人脸替换,人脸融合,人脸迁移,人脸特效,证件照生成等七个功能模块。 界面模块分为调节美颜,人脸迁移,人脸识别,人脸替换,人脸融合,证件照,生成等六个界面模块,其中调节美颜所在界面模块为主界面模块。 界面和功能模块间的逻辑关系大致为:每个界面模块对应其相应的功能模块,界面为交互式界面,触发界面调用对应的功能。
2022-12-16 15:26:21 1.65MB Opencv Pyqt5 GUI界面 人脸特效源码
Haar分类器结合keras-facenet算法实现人脸检测分割及人脸识别考勤系统完整源码+项目说明.zip 【模式识别-人脸识别考勤系统】 利用Haar分类器完成人脸检测、分割;利用FaceNet网络完成人脸识别。 【依赖库】 opencv-python numpy keras-facenet(见 https://pypi.org/project/keras-facenet/ ) Keras TensorFlow 其中,keras-facenet需要下载预训练模型置于~/.keras-facenet目录下,如果你获得的版本在model/目录下没有带该模型,请自行到该库的GitHub仓库页下载,或在第一次调用该库时也会自动下载。 【使用face_manager.py可以进行人脸的录入,注意录入姓名时,之间不要用空格分隔】 【使用main.py可以进行人脸考勤主操作】 准确率达到93.2% 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。
毕业设计的文献综述“Adaboost是一种自适应的boosting算法,该算法利用大量的分类能力一般的简单(弱)分类器(Basic Classifier)通过一定的方法叠加(Boost)起来,构成一个分类能力很强的强分类器(Strong Classifier)。其基本思想是:当分类器对某些样本正确分类时,则减少这些样本的权值;当错误分类时,则增加这些样本的权值,让学习算法在后续的学习中集中对比较难的训练样本进行学习,最终得到一个识别率理想的分类器。该算法的人脸检测对于单人脸正面图像的检测效果较好,误检率也比较低。然而AdaBoost算法采用顺序前进法搜索策略,尽管每次迭代选择的弱分类器是局部最优,但最终构成强分类器的弱分类器及其系数并不是最优。而且对于侧面及多人脸图像检测正确率不高。
2022-12-15 21:03:14 155KB Adaboost
1