LLM交互程序功能详细说明 ## 1. 程序概述 LLM交互界面是一个基于Python和Tkinter开发的图形化应用程序,用于连接和使用各种大型语言模型(LLM)服务,如OpenAI兼容API、Ollama等。程序提供了丰富的配置选项和交互功能,允许用户自定义提示词、管理知识库文件,并与语言模型进行多种形式的交互。 ## 2. 界面结构 程序界面由四个主要标签页组成: ### 2.1 交互界面 - **输入区域**:用于输入用户文本 - **信息显示**:展示当前使用的提示词名称和加载的知识库文件数量 - **结果区域**:显示模型响应和请求过程信息 - **控制按钮**:发送请求和清除结果 ### 2.2 提示词与知识库 - **提示词管理部分**: - 提示词列表显示 - 提示词编辑区(名称和内容) - 提示词操作按钮(添加、删除、应用、保存) - **知识库管理部分**: - 文件列表 - 文件操作按钮(添加、移除、清除、保存) - 文件预览区域 ### 2.3 模型配置 - **服务器设置**:服务器URL、模型名称、API密钥 - **模型参数**:温度、top-p、top-k、重复惩罚、最大生成长度 - **配置保存**:保存所有配置到本地文件 ### 2.4 高级设置 - **API配置**:端点路径、请求格式、响应格式 - **快速API预设**:用于快速切换不同服务类型的配置 - **原始请求预览**:查看和编辑原始JSON请求格式 ## 3. 核心功能详解 ### 3.1 提示词管理系统 提示词系统允许用户创建、保存和管理多个命名的提示词模板: - **创建提示词**:用户可以输入提示词名称和内容,点击"添加"或"保存"按钮 - **编辑提示词**:选择已有提示词,修改内容后保存 -
2026-01-22 00:18:32 45KB
1
在COMSOL软件中利用相场和水平集方法进行两相流相对渗透率计算的具体步骤和技术细节。首先解释了相场法和水平集法的基本概念和实现方式,包括相场变量的定义、迁移率参数的设置以及水平集输运方程的调整。然后针对这两种方法可能存在的质量问题,提出了三种有效的质量守恒保障策略:残差监控、质量补偿和时间步长自适应调整。最后讨论了不同方法的特点和应用场景,为实际工程应用提供了指导。 适合人群:从事多相流模拟、材料科学、石油工程等领域研究的专业人士,尤其是对COMSOL仿真有一定基础的研究人员。 使用场景及目标:帮助研究人员掌握在COMSOL中实施相场和水平集方法的技术要点,解决计算过程中常见的质量守恒问题,提高仿真的准确性和稳定性。 其他说明:文中提供的MATLAB代码片段有助于理解和实践具体的算法实现,对于优化计算效率和结果可靠性有重要参考价值。
2026-01-21 21:14:50 639KB COMSOL 质量守恒
1
内容概要:本文档详细介绍了为智能空气净化器设计的STM32控制框架代码,旨在满足母婴家庭和新房装修用户的特定需求。该系统实现了PM2.5和甲醛浓度监测、APP远程控制以及智能联动功能。文中涵盖了传感器数据采集模块,用于获取空气质量、温度和湿度数据;网络通信模块,利用ESP8266通过MQTT协议进行数据传输和接收控制指令;空气净化控制逻辑,包括风扇速度控制和冷暖风切换;用户安全功能模块,提供童锁和滤网寿命提醒。此外,还描述了主控制循环和辅助函数,确保系统稳定运行并响应各种环境变化。 适合人群:具有嵌入式系统开发经验的技术人员,尤其是对STM32微控制器和空气净化设备感兴趣的工程师。 使用场景及目标:①针对母婴家庭和新房装修用户提供高效、安全的空气质量解决方案;②实现PM2.5和甲醛浓度的精确监测,并通过APP远程监控和控制;③根据环境参数自动调节风扇速度,保证舒适度的同时降低能耗;④增强用户体验,提供远程交互和安全防护功能。 阅读建议:本资源侧重于STM32控制框架的实际应用,建议读者结合硬件配置和软件实现一起学习,重点关注传感器数据处理、网络通信协议、安全机制的设计与实现。同时,在实践中应根据具体硬件调整相关参数,以确保系统的稳定性和可靠性。
2026-01-21 18:38:07 24KB STM32 空气质量监测 MQTT协议 智能家居
1
在本篇中,我们将深入探讨如何使用LIVE555库来拉取H264视频流,并在其中实现账号密码验证。LIVE555是一个开源的C++库,广泛用于实时多媒体流处理,包括RTSP(Real-Time Streaming Protocol)和RTMP(Real-Time Messaging Protocol)等协议。在实际应用中,为了确保安全性和隐私性,通常需要对流媒体内容进行身份验证。 我们需要了解RTSP协议,它是用来控制多媒体数据传输的协议,常用于IP视频监控和在线流媒体服务。RTSP支持多种编码格式,包括H264,这是一种高效的视频编码标准,广泛应用在现代视频流中。 在使用LIVE555库时,我们需要创建一个RTSP客户端,该客户端能够连接到服务器并发送请求。第一步是包含必要的头文件,并实例化`UsageEnvironment`和`TaskScheduler`对象,这两个对象分别用于事件处理和任务调度。 接下来,我们要创建`BasicSession`对象,这个对象代表与服务器的会话。在建立会话时,我们可以设置用户名和密码,以实现认证。例如: ```cpp char* username = "yourUsername"; char* password = "yourPassword"; char* authHeader = createAuthorizationHeader(request, username, password); request->addHeader("Authorization", authHeader); ``` 这里,`createAuthorizationHeader`是一个自定义函数,用于生成HTTP Basic Auth的头信息。它会根据给定的用户名和密码生成Base64编码的认证字符串。 然后,我们使用`RTSPClient`对象向服务器发送`DESCRIBE`请求,获取媒体描述信息,这包含了H264视频流的解码参数。一旦收到响应,我们解析SDP(Session Description Protocol)信息,从中提取出H264的解码器配置。 接着,我们发送`SETUP`请求,设置数据传输的端口和传输协议(通常是UDP)。在成功设置后,服务器会返回一个`Transport:`头,指示数据传输的详细信息。 现在,我们可以发送`PLAY`请求开始拉取流。LIVE555库提供了一个`ReceivePacketTask`,用于接收来自服务器的数据包。这些数据包通常包含H264的NAL单元,我们可以解码这些单元并显示视频。 为了确保安全,我们还需要处理可能的错误情况,比如认证失败、网络中断等。当认证失败时,服务器会返回一个401(Unauthorized)响应,此时我们需要重新发起请求,或者提示用户输入正确的凭证。网络问题则可能导致接收数据包失败,这时我们需要重试或通知用户。 在实践中,你可能会遇到各种问题,如兼容性、延迟、丢包等。LIVE555库提供了丰富的功能和回调机制,可以帮助你调试和优化。 通过LIVE555库,我们可以方便地实现在C++中拉取H264视频流,并添加账号密码验证。这不仅涉及到RTSP协议的交互,还涵盖了网络通信、身份验证以及视频解码等多个方面的知识。在实际项目中,理解并熟练掌握这些细节对于构建可靠的多媒体流系统至关重要。
2026-01-21 14:50:42 918KB LIVE555
1
在当前的数字时代,用户信息的安全性和隐私保护是每个平台都在关注的重点。随着社交软件的普及,微信作为其中的佼佼者,承载着海量用户的聊天记录、个人信息等敏感数据。对于安全研究员和数据分析师而言,能够访问并分析微信数据库是一项重要的技能。然而,微信数据库的加密机制相对复杂,提取其中的信息需要特殊的技术手段。 本文要介绍的是一款名为“跨平台微信数据库密码与用户信息提取工具”的软件,该软件集成了多种先进技术,能够有效地解决用户在不同操作系统下提取微信用户数据的需求。它支持Windows与macOS双系统环境,让使用不同操作系统平台的用户都能够进行微信数据库的解密和用户数据的提取工作。这在一定程度上满足了跨平台用户的需求,也提升了工具的实用性。 实现跨平台功能的关键之一是使用了“pymem内存特征定位技术”。这项技术的应用使得工具能够针对不同版本的微信软件进行兼容,无论微信如何更新其内部结构和加密算法,提取工具都能准确定位到内存中的关键信息,从而实现对密钥的提取。这种技术的先进性和高效性是该工具得以广泛使用的重要原因。 另外,从提供的文件名称列表中可以看到,工具附带了“附赠资源.docx”和“说明文件.txt”这两个文档资源。这意味着用户在使用该工具时,不仅能够通过直观的操作界面进行数据库提取,还能通过阅读详细的说明文档来深入理解工具的使用方法和相关技术细节。这样的设计考虑充分体现了开发者对用户体验的重视,确保即使是非专业人士也能较为容易地掌握工具的使用。 工具的打包文件还包括了名为“WeChatUserDB-main”的主文件夹,推测该文件夹包含了提取工具的核心程序代码和数据处理模块。由于采用了Python这一被广泛认知的编程语言,相信这部分的代码具有良好的可读性和扩展性。同时,Python语言的广泛应用也为用户提供了更多的可能性,比如自行编写脚本与该工具进行交互,实现更加复杂的自动化处理任务。 通过以上分析,我们可以看出,这款跨平台微信数据库密码与用户信息提取工具,不仅仅是一个简单的数据提取软件。它结合了多种技术优势,如跨平台支持、先进的内存定位技术和详尽的用户文档,使其在处理微信用户数据提取方面表现出色。它的推出,无疑为研究人员和安全专家提供了一个强有力的数据处理工具,也为他们分析和保护用户信息安全提供了新的可能性。
2026-01-21 13:58:29 2.02MB python
1
在本文中,我们将深入探讨如何使用VC++来实现一个三态树控件(CTreeCtrl)的功能增强,特别是在实现全选、不选和部分选择的交互。三态树控件通常用于显示层次结构数据,而在此基础上增加的三态功能可以让用户更灵活地管理这些数据的选中状态。 我们要理解什么是三态树。传统的树控件通常只有两种状态:选中和未选中。而三态树则引入了一个新的状态——部分选中,这样用户可以对一组项目进行部分选择,而不必完全选中或取消选中所有项。这对于表示复杂的选中关系特别有用,例如在文件系统浏览或项目管理应用中。 为了实现这样的功能,我们需要重载`CTreeCtrl`类的一些关键成员函数。例如,我们可以重载`OnSelChanged`来处理选中状态的变化,`OnSelChanging`来处理选中状态改变前的逻辑,以及`OnGetdispinfo`来更新控件显示的信息。我们还需要自定义消息处理,可能需要添加一个新的消息,如`WM_TRISTATE_SELECT`,来处理三态选择的行为。 在遍历文件夹并填充树控件的过程中,我们需要使用Windows API函数,如`FindFirstFile`、`FindNextFile`和`FindClose`来获取和列举本地磁盘上的文件和子文件夹。每个文件夹或文件节点都可以是一个树节点,其选中状态根据实际需要设置为全选、不选或部分选中。 实现全选功能时,我们需遍历整个树结构,将所有节点设置为选中状态。部分选择则涉及更复杂的逻辑,可能需要维护一个状态数组,记录每个节点的选中状态。当用户尝试部分选择时,可以根据这个数组更新选中状态。不选则相对简单,只需清除所有节点的选中状态即可。 为了提供用户友好的界面,我们还可以添加额外的菜单选项或按钮,允许用户一键切换全选、不选和部分选择状态。同时,确保在用户进行多选操作时,控件能正确反映这些变化,例如通过右键菜单或键盘快捷键实现。 在编程实现时,需要注意性能优化,避免在大量数据遍历时导致程序卡顿。可以考虑使用异步更新或分批处理来提高用户体验。此外,良好的错误处理和异常安全也是必不可少的,以确保在出现意外情况时程序能稳定运行。 实现三态树控件需要对VC++的MFC库有深入理解,掌握`CTreeCtrl`的使用,并能够灵活运用Windows API进行文件遍历。同时,需要具备良好的编程习惯和设计模式,以构建可扩展和可维护的代码。通过以上步骤,我们可以成功创建一个功能丰富的三态树控件,用于展示和管理本地磁盘的文件夹结构。
2026-01-21 12:23:46 300KB VC++ 三态树实现 遍历文件夹
1
在本文中,我们将深入探讨如何使用FPGA进行串口(UART)和IIC通信协议来实现对EEPROM的读写操作。这是一项重要的技能,对于FPGA开发者来说,能够掌握这两种通信方式并应用于存储器的控制是十分有价值的。Vivado是一款强大的Xilinx FPGA设计工具,我们将使用它来构建我们的设计。 让我们了解一下UART(通用异步收发传输器)。UART是一种简单的串行通信接口,广泛用于设备间的低速通信。在FPGA中实现UART,我们需要设置波特率发生器来产生适当的时钟信号,并创建发送和接收数据的逻辑。UART通信包括起始位、数据位、奇偶校验位和停止位,通常以8位数据格式进行传输。 接着,我们转向IIC(Inter-Integrated Circuit),也称为I²C。这是一种多主机、双向、两线式串行总线,用于连接微控制器和其他外围设备。IIC协议由起始位、从机地址、命令/数据位、应答位和停止位组成。在FPGA中实现IIC,我们需要构建时序控制器来确保正确的时间关系,以及数据线上的电平检测。 然后,我们讨论核心主题:如何使用UART和IIC与EEPROM交互。EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种非易失性存储器,允许在不破坏芯片的情况下多次读写。在FPGA设计中,我们可能会用到EEPROM来存储配置信息或用户数据。 1. **UART到EEPROM的通信**:通过UART接收来自主机的数据,然后将这些数据通过IIC协议写入EEPROM。这需要一个UART接收器来解析接收到的字节,然后将这些字节转换为IIC协议的格式。 2. **IIC从EEPROM到UART的通信**:当需要从EEPROM读取数据时,FPGA会向EEPROM发送IIC读命令,读取数据后,再通过UART将数据发送回主机。这里的关键是确保在UART和IIC之间正确地同步数据传输。 在Vivado中,我们可以使用VHDL或Verilog语言编写这些模块,并利用IP Integrator进行集成。Vivado还提供了IP核,如UART和IIC控制器,可以简化设计过程。 3. **Vivado工程的构建**:创建一个新的Vivado工程,添加UART和IIC的IP核。配置IP核参数以满足项目需求,如UART的波特率和IIC的时钟频率。接着,编写自定义逻辑来桥接UART和IIC,处理读写请求和数据流。 4. **仿真和硬件验证**:完成设计后,进行功能仿真以验证UART和IIC之间的数据传输是否正确。一旦仿真通过,就可以将设计下载到FPGA板上进行硬件验证,确保在真实环境中也能正常工作。 5. **调试和优化**:在实际应用中,可能需要对设计进行调试和优化,例如调整波特率以改善通信速度,或者增加错误检测和恢复机制以提高系统的可靠性。 理解和实现FPGA中的UART和IIC通信,以及对EEPROM的读写操作,是FPGA开发中的一个重要环节。通过Vivado这样的工具,我们可以更高效地设计和验证这样的系统,从而在实际应用中发挥出FPGA的强大功能。
2026-01-21 10:09:32 668.28MB fpga开发
1
基于python的word文档合并程序,已打包成exe,双击即可直接使用
2026-01-21 09:12:19 13.62MB python
1
Controllab是一款强大的自动化开发软件,特别适合于软件再开发以及模块化的自动化编程。它通过提供直观的图形化编程环境,让开发者能够通过拖拽和连线的方式替代传统的繁琐代码编写,极大地提升了开发效率和降低了出错概率。 1. **概述和基本概念** Controllab的核心理念是简化编程过程,其主要包含三个关键组件: - **工程管理器 (CONTROL LAB MANAGER)**:这是一个项目管理工具,允许用户组织、管理和跟踪整个自动化项目的各个阶段,包括工程的创建、编辑和调试。 - **图形化编程平台 (CONTROL DIAGRAM)**:提供了两种主要的编程视图——梯形图 (Ladder Diagram) 和功能块图 (Function Block Diagram)。梯形图是基于IEC 61131-3标准,广泛用于PLC编程,而功能块图则更适合复杂逻辑和算法的可视化表示。 - **人机界面组态 (CONTROL HMI)**:这部分允许用户设计和配置与操作人员交互的用户界面,包括报警系统和实时数据展示。 2. **人机界面组态** - **HMI 组态**:Controllab提供了丰富的图形元素和布局工具,使得创建直观且功能齐全的操作界面变得简单易行。 - **报警系统**:在Controllab中,可以设置和管理各种报警条件,当系统状态达到预设阈值时,系统会自动触发报警,确保系统的安全性和稳定性。 3. **高速数据采集 (CONTROL DAAS)** Controllab支持高速数据采集,这对于实时监控和数据分析至关重要。用户可以通过软件进行实时数据的记录、分析和显示,有助于提升系统的性能优化和故障排查能力。 4. **创建并运行一个工程** - **启动和创建工程**:用户首先启动Controllab,然后可以创建新的工程,并定义AS(Automation Server)服务器以及添加任务。 - **编辑PLC任务**:在工程中,用户可以详细配置PLC的任务,包括输入/输出映射、程序逻辑等。 - **HMI的设计与实现**:完成PLC任务后,用户可以着手设计HMI,包括添加控件、设定交互逻辑,以实现与硬件设备的有效通信。 - **运行工程**:用户可以运行整个工程,实时监控系统的运行状态,并根据需要进行调试和优化。 Controllab的这些特性使其成为自动化行业的有力工具,无论是对于初学者还是经验丰富的开发者,都能提供高效、直观的编程体验。通过减少手动编码的工作量,Controllab有助于加快项目进度,同时降低维护成本,是自动化编程领域的一大创新。
2026-01-20 23:27:54 5.77MB 编程语言
1