焦点频率损失 该存储库将提供以下论文的正式代码: 图像重建和合成的焦点频率损失,,和arXiv预印本,2020年。 摘要:由于生成模型的发展,图像重建和合成取得了显着进展。 但是,实际图像和生成的图像之间仍然存在间隙,尤其是在频域中。 在这项研究中,我们表明,在频域中缩小间隙可以进一步改善图像重建和合成质量。 我们提出了一种新颖的焦点频率损耗,它可以使模型自适应地关注那些难以通过对简单频率分量进行加权来合成的频率分量。 这个目标函数是对现有空间损耗的补充,由于神经网络的固有偏差,对重要频率信息的丢失提供了很大的阻抗。 我们展示了聚焦频率损失在感知质量和定量性能方面的多功能性和有效性,以改善诸如VAE,pix2pix和SPADE等流行模型。 我们还将在StyleGAN2上展示其潜力。 更新 [12/2020]焦点频率损失在arXiv上发布。 代码 该代码将公开提供。 敬请期待。 结果
1
Flying Focal Spot (FFS) in Cone–Beam CT 锥束CT的飞焦
2021-09-10 14:08:43 1.15MB FlyingFocalSpo 飞焦 Cone–BeamCT
1
焦点损失 降低了分类良好的示例的权重。 这样做的净效果是,将更多的培训重点放在难以分类的数据上。 在我们的数据不平衡的实际环境中,由于我们拥有更多的数据,我们的多数阶级将很快得到很好的分类。 因此,为了确保我们在少数族裔班上也能达到很高的准确性,我们可以使用焦点损失在训练过程中为那些少数族裔班级提供更多的相对权重。 焦点损失可以很容易地在Keras中实现为自定义损失函数。 用法 以焦点损失为样本编译模型: 二进位 model.compile(损失= [binary_focal_loss(alpha = .25,gamma = 2)],指标= [“准确性”],优化程序= adam) 分类的 model.compile(损失= [categoical_focal_loss(alpha = [[。25,.25,.25]],gamma = 2)],指标= [“准确性”],优化程序= ad
1
Focal Loss的Pytorch实现及测试完整代码,适合深度学习,计算机视觉的人群
2021-05-22 21:06:49 20KB pytorch 计算机视觉 深度学习 focalloss
1
Focas函数说明汇总
2021-03-23 19:03:21 3.25MB Focas Fanuc 数据采集 CNC
1
具有三重态焦点损失的人员重新识别
2021-03-07 09:05:23 945KB Re-identification Triplet Focal Loss
1