App Inventor 2 AI2伴侣截止目前的最新版v2.69版。
2024-10-20 21:06:02 17.37MB AppInventor AppInventor2 AI伴侣
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:17:00 8.06MB python 人工智能 ai
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-10-19 19:09:31 4.15MB 人工智能 ai python
1
人工智能AI进阶 人工智能课件 课外拓展10阶段十 CV基础+项目更新.rar 17.4GB 课外拓展09阶段九 阶段五NLP基础补充视频.rar 542.9MB 课外拓展08阶段八 阶段四深度学习基础补充视频.rar 531.7MB 课外拓展07阶段七 阶段三 机器学习更新.rar 3.1GB 课外拓展06阶段六 阶段二 Python高级更新.rar 8.6GB 课外拓展05阶段五 阶段一 python基础更新.rar 6.5GB 课外拓展04阶段四 入学第一课.rar 0.0MB 课外拓展03阶段三 赠送-文本摘要项目.rar 4.2GB 课外拓展02阶段二 赠送-人脸支付.rar 2.9GB 课外拓展01阶段一 HR面试技巧.rar 619.3MB 主学习路线07阶段七 人工智能面试强化赠送.rar 5.3GB 主学习路线06阶段六 人工智能项目实战.rar 22.7GB 主学习路线05阶段五 NLP自然语言处理.rar 10.2GB 主学习路线04阶段四 计算机视觉与图像处理.rar 10.6GB 主学 ### 人工智能AI进阶课程概览 #### 一、课程背景及目标 本课程旨在为学员提供一个系统性的人工智能(AI)学习路径,帮助学员掌握从基础到进阶的各项关键技术,包括但不限于Python编程、机器学习、深度学习、计算机视觉(CV)、自然语言处理(NLP)等领域。通过丰富的理论知识讲解与实践项目操作相结合的方式,让学员能够将所学应用于实际工作中。 #### 二、课程结构与内容概述 **1. 主学习路线** - **主学习路线07阶段七:人工智能面试强化** - 内容规模:5.3GB - 内容概述:针对求职者设计的一套全面复习材料,涵盖AI领域的面试题型、答题技巧及常见问题解析等,帮助学员提高面试成功率。 - **主学习路线06阶段六:人工智能项目实战** - 内容规模:22.7GB - 内容概述:一系列真实世界中的AI项目案例分析与实践,覆盖多个应用场景和技术领域,如推荐系统、自动驾驶等。 - **主学习路线05阶段五:NLP自然语言处理** - 内容规模:10.2GB - 内容概述:深入探讨NLP技术的基础原理及其在聊天机器人、情感分析等场景中的应用。 - **主学习路线04阶段四:计算机视觉与图像处理** - 内容规模:10.6GB - 内容概述:聚焦于CV领域的核心技术与算法,包括图像识别、目标检测、图像分割等内容,并结合实例进行讲解。 **2. 课外拓展资料** - **课外拓展09阶段九:阶段五NLP基础补充视频** - 内容规模:542.9MB - 内容概述:作为对主学习路线中NLP部分的补充,这些视频提供了更深层次的技术细节介绍。 - **课外拓展08阶段八:阶段四深度学习基础补充视频** - 内容规模:531.7MB - 内容概述:深化对深度学习的理解,涵盖了神经网络的基本概念以及如何构建和优化深度学习模型的方法。 - **课外拓展07阶段七:阶段三机器学习更新** - 内容规模:3.1GB - 内容概述:最新的机器学习教程,包括监督学习、无监督学习等多种学习方法的最新进展。 - **课外拓展06阶段六:阶段二Python高级更新** - 内容规模:8.6GB - 内容概述:Python编程语言高级用法的集合,包括面向对象编程、高级数据结构、异步编程等内容。 - **课外拓展05阶段五:阶段一python基础更新** - 内容规模:6.5GB - 内容概述:适合初学者的Python基础教程,介绍了变量、数据类型、控制结构等基础知识。 - **课外拓展04阶段四:入学第一课** - 内容规模:0.0MB - 内容概述:简短的介绍性课程,帮助学员快速了解整个学习路径的结构和规划。 - **课外拓展03阶段三:赠送-文本摘要项目** - 内容规模:4.2GB - 内容概述:一个完整的文本摘要项目案例,涉及文本预处理、特征提取、模型训练等多个环节。 - **课外拓展02阶段二:赠送-人脸支付** - 内容规模:2.9GB - 内容概述:基于计算机视觉技术的人脸识别和支付系统开发教程,包括硬件选型、软件实现等方面。 - **课外拓展01阶段一:HR面试技巧** - 内容规模:619.3MB - 内容概述:专为技术岗位求职者准备的面试技巧指南,包括简历撰写、面试流程、沟通技巧等内容。 #### 三、总结 通过上述详细的课程结构与内容介绍,可以看出该课程体系覆盖了人工智能领域的各个方面,既注重基础知识的培养,又强调实践技能的提升。无论是对于想要进入AI行业的新人还是希望进一步提升技能的专业人士来说,都是一个非常有价值的学习资源。
2024-10-17 12:27:40 93B 人工智能 计算机视觉 图像处理
1
ChatGPT 初识 解释为什么选择介绍ChatGPT ChatGPT 工作原理 语言模型和生成式对话系统的概念 ChatGPT 应用场景 ChatGPT在实际应用中的重要性 ChatGPT 优势挑战 在线客服和技术支持中的应用案例ChatGPT是一个由OpenAI开发的强大语言模型,基于GPT-3.5架构。它具备广泛的语言理解和生成能力,可以与人类进行自然而流畅的对话。ChatGPT可以处理各种问题,提供信息、解释概念、帮助解决问题,还能进行闲聊和娱乐。 【AI人工智能介绍】 人工智能(Artificial Intelligence, AI)是一门计算机科学的分支,致力于研究如何使计算机模拟人类智能的行为。这一领域涵盖了机器学习、深度学习、自然语言处理(NLP)、计算机视觉等多个子领域。AI的目标是创建能自主学习、理解和适应复杂环境的智能系统。 【ChatGPT初识】 ChatGPT是由OpenAI公司开发的一款强大语言模型,基于GPT-3.5架构。ChatGPT的设计目标是与用户进行自然、流畅的对话,其功能包括但不限于回答问题、提供解释、帮助解决问题以及参与闲聊。通过在海量的文本数据上进行训练,ChatGPT学会了理解和生成多种语言的能力,能够处理各种主题的问题。 【工作原理】 ChatGPT的工作原理依赖于语言模型和生成式对话系统。语言模型是通过对大量文本数据进行学习,理解语言的结构和模式。ChatGPT采用了自注意力机制的Transformer架构,这使得模型能捕捉输入序列的上下文信息,理解单词之间的相对位置,进而生成连贯的回应。在处理问题时,ChatGPT不仅根据问题本身,还会考虑之前的对话历史,以提供更符合情境的回答。 【应用场景】 ChatGPT的应用场景广泛,包括在线客服、技术支持、教育、创意写作等多个领域。在客服和技术支持中,ChatGPT可以快速提供信息,解答用户疑问,降低人工客服的压力。在教育领域,它可以帮助学生理解和解决学术问题。在创意写作方面,ChatGPT可以协助作者生成故事线、角色设定等,激发创作灵感。 【优势与挑战】 ChatGPT的优势在于其强大的语言理解和生成能力,能提供及时、准确的反馈。然而,也存在挑战,如可能产生的误导性信息、隐私问题以及对人类工作的潜在替代。在实际应用中,需要不断优化模型,提高其准确性和安全性,同时平衡技术进步与社会伦理的考量。 【微调与应用案例】 为了适应特定任务,ChatGPT可以进行微调,即在原始模型基础上,使用特定领域的数据进行进一步训练。微调过程包括数据准备、模型训练、超参数调整、评估与调优。通过这种方式,ChatGPT能够在特定领域,如医疗咨询、法律援助等,提供更为专业和针对性的服务。 AI和ChatGPT的发展正在深刻改变我们的生活方式,它们在各个领域的应用不断拓展,既提高了效率,也带来了新的挑战。作为一项前沿技术,ChatGPT将持续影响和推动人工智能的前进。
2024-10-15 10:11:10 42.22MB 人工智能 课程资源
1
国家电网调控AI创新大赛:电网运行组织智能安排比赛方案.zip
2024-10-11 11:07:40 26.94MB
1
ChatGPT,人工智能的旷世巨作。ChatGPT是一种聊天机器人软件,OpenAI于2022年11月推出的聊天机器人,具备人类语言 交互外复杂 的语言工作,包括自动文本生成、自动问答、自动摘要等多重功能,应用场景广阔,相较于上个版本更像人类一样聊天交流。O penAI除了 ChatGPT还包括Dal·E2、 Whisper等项目分别是自动绘图、自然语言翻译等软件。OpenAI的商业模式即API接口收费,可根据 不同项目需 求进行收费,我们认为其商业模式属于底层模型开放性标准化SAAS服务模式。我国仍处于初期阶段,以辅助生成内容服务为主 ,我们认为 未来有望形成相关SAAS模式。 ChatGPT促使AIGC快速商业化发展。GPT系列是AIGc的一种商业化方向,目前AIGC已经实现商业化的方向有A写作、AI作图、 AI底层建模, 未来AI生成视频和动画领域有望快速商业化发展。AIGC也被认为是继UCC、PGC/UCC之后的新型内容生产方式,有望解决PCC/UGC 创作质量参 差不齐或是降低其有害性内容传播等问题,有望在实现创意激发,提升内容多样性的同时降本增效,并大规模使用。目前我国已 ChatGPT,作为人工智能领域的里程碑之作,是由OpenAI在2022年11月推出的一款聊天机器人软件。它的出现标志着人工智能技术的巨大进步,尤其在自然语言处理领域。ChatGPT不仅能够像人类一样进行流畅的对话,还能执行一系列复杂的语言任务,如自动文本生成、自动问答和自动摘要。这些功能的实现依赖于其背后的先进算法和庞大的训练数据集,使得ChatGPT在各种应用场景中展现出巨大的潜力。 OpenAI的ChatGPT并非孤立存在,它与Dall·E2(自动绘图)和Whisper(自然语言翻译)一起,构成了OpenAI的产品矩阵,涵盖了图像生成和语音处理等领域。OpenAI的商业模式是通过API接口收费,提供标准化的SAAS服务,允许开发者根据需求接入其强大的AI能力,从而为不同的应用场景定制解决方案。这一模式有望在全球范围内得到广泛应用,尤其是在中国,虽然目前仍处于初级阶段,但预计未来将逐步发展出类似的SAAS服务。 AIGC(人工智能生成内容)是ChatGPT推动的一个重要方向,它代表了继UGC(用户生成内容)和PGC(专业生成内容)之后的新一代内容生产方式。AIGC已经在AI写作、AI作图和AI底层建模等领域实现商业化,未来在视频和动画生成方面也将有显著进展。AIGC有望解决传统内容生产中的质量问题,减少有害内容的传播,并提高效率,降低成本。在中国,已有如百度的AIGC数字人主播度晓晓和百家号TTV等项目,展示了AIGC在实际应用中的可能性。 随着AIGC的快速发展,相关产业链上的企业将受益。这包括AI处理器厂商,他们提供的自研处理器能为AIGC提供高效能、低能耗的计算支持;AI商业算法的落地厂商,它们在自然语言处理、机器视觉等领域的技术优势将助力AI应用的推广;以及拥有AIGC技术储备的应用厂商,它们可以通过创新应用提升内容多样性和降低成本,进一步开拓市场。因此,投资者可以关注具备相关技术的公司,如寒武纪、商汤、海光信息、科大讯飞等。 然而,AIGC的发展也面临挑战,如核心技术升级可能不如预期,AI伦理问题的讨论日益激烈,政策推进速度可能较慢,以及国际贸易摩擦可能对行业发展带来不确定性。在投资时,需要充分考虑这些风险因素。 ChatGPT及其引发的AIGC热潮正在深刻改变人工智能产业,开启了一个全新的AI纪元。随着技术的不断成熟和应用场景的拓宽,相关企业和整个行业都将迎来前所未有的机遇。
2024-09-29 10:05:44 2.79MB OpenAI 人工智能
1
「Sora专属提示词库」可能是指用于个人或团队定制的词库,用于在特定场景或应用中提供定制化的提示和建议。这样的提示词库可以用于增强用户体验、提供定制化的功能或服务,或者用于特定领域的专业化应用。在不同的应用中,「Sora专属提示词库」可能包括特定的行业术语、产品特性、用户喜好等信息,以便系统能够更好地理解用户意图并提供个性化的建议和支持。
2024-09-29 10:01:25 59KB 人工智能 AI Sora
1
标题中的“一个轻量化,Sora部分模型代码开源”揭示了这个项目的核心——Sora模型的部分源代码已经公开,旨在提供一个轻量级的解决方案。Sora可能是一个专注于效率和性能的深度学习模型,它的开源使得研究者和开发者能够更好地理解和利用这种技术。 描述中的“Sora采用了扩散型变换器(diffusion transformer)架构”提到了Sora模型所采用的独特算法。扩散型变换器是一种基于深度学习的架构,其工作原理是通过逐步消除或“扩散”随机噪声来恢复或生成数据。这种方法在图像生成、语音合成等领域表现出色,因为它可以捕捉到数据的复杂结构和细节,同时保持计算效率。相比于传统的自注意力机制,扩散型变换器可能在处理大规模数据时更为高效,且能处理序列的长期依赖性。 “深度学习”和“AI”这两个标签进一步强调了Sora模型的背景。深度学习是人工智能的一个子领域,它通过多层神经网络对大量数据进行学习,以实现模式识别和决策制定。Sora模型利用深度学习的能力,特别是通过扩散型变换器,来解决特定的AI问题,可能是图像生成、自然语言处理、音频处理等。 在“sora-master”这个压缩文件名中,我们可以推断这是Sora项目的主分支或主要版本,通常包含模型的源代码、训练脚本、数据集处理工具以及可能的预训练模型权重。对于希望了解Sora模型工作原理或希望在自己的项目中应用Sora的人来说,这是一个宝贵的资源。 综合以上信息,我们可以总结出以下知识点: 1. Sora是一个轻量级的深度学习模型,采用了扩散型变换器架构。 2. 扩散型变换器是一种处理随机噪声的方法,适用于复杂数据结构的恢复和生成。 3. Sora模型可能被用于图像生成、语音合成或其它与序列数据处理相关的AI任务。 4. 开源的Sora模型代码提供了研究和开发的基础,用户可以对其进行修改和优化以适应自己的需求。 5. “sora-master”压缩文件包含Sora模型的主要代码和资源,有助于用户理解和使用Sora模型。
2024-09-29 09:59:34 1.73MB Sora 深度学习 AI
1