花卉病害检测数据集具有显著的实用价值,能够帮助相关领域的研究者和开发者进行精确的模型训练和验证。该数据集包含了2163张图像,这些图像均以Pascal VOC格式和YOLO格式进行标注,但不包含分割路径的txt文件,仅包含jpg图片、对应的VOC格式xml文件和YOLO格式txt文件。这种双格式的标注方式,为不同的目标检测框架提供了便利,Pascal VOC格式广泛应用于计算机视觉领域,而YOLO格式则因其速度和准确性被许多实时检测系统所采纳。 数据集中的图片数量和标注数量均为2163,表明每张图片都有相应的标注文件。数据集包含了8种不同的花卉病害类别,分别为黑斑(Black-Spot)、叶斑病(Cercospora-Leaf-Spot)、霜霉病(Downy-Mildew)、鲜叶(Fresh-Leaf)、粉霉病(Powdery-Mildew)、玫瑰(Rose)、灰霉病(Rose-Botrytis-Blight)和蜗牛(Rose-Slug)。对这些类别进行精确区分,并对各自类别进行了矩形框标注,有助于机器学习模型识别和分类不同的病害。 具体到每种类别的病害,标注的框数分别为:黑斑1204个框,叶斑病2023个框,霜霉病445个框,鲜叶347个框,粉霉病1043个框,玫瑰223个框,灰霉病216个框,蜗牛1755个框。这些数字反映了数据集中各类病害出现的频率,对于训练数据集时进行类别权重调整有着重要的意义。总框数为7256,这些框数的积累为深度学习模型提供了丰富多样的训练样例。 本数据集使用了标注工具labelImg进行标注工作,这款工具广泛应用于目标检测任务中,它能够生成标准的XML格式标注文件。通过矩形框的方式对目标进行标注,简单直观且易于被计算机视觉模型理解。另外,数据集特别指出了标注规则,并强调了类别名称与YOLO格式类别顺序不完全对应,后者需以labels文件夹中的classes.txt文件为准。 数据集中的每个标注类别都有着相应数量的框数,这有助于模型在训练过程中对病害的识别和分类。其中,尤其需要注意的是Rose-Slug类别,其框数最多,达到1755个,这可能意味着在数据集中蜗牛造成的破坏较为常见,因此在设计模型时应对此予以重视。 重要说明部分提到了数据集不包含任何关于训练模型或权重文件精度的保证,这意味着使用此数据集训练出的模型性能可能会因多种因素而有所不同。数据集的提供者还强调,数据集提供的标注图片是准确且合理的,但模型精度仍需用户自己验证。 在机器学习尤其是深度学习领域,数据集是模型训练的基础。一个质量高、标注准确的数据集对于模型的训练至关重要。花卉病害检测数据集VOC+YOLO格式2163张8类别数据集以其精准的标注、丰富的类别和大量的样本,无疑为花卉病害的自动检测和识别提供了强有力的支持,有助于相关领域的科研和应用进步。研究者和开发者可以利用该数据集进行模型训练和测试,为花卉种植业的病害监控和防治提供自动化和智能化的技术支持。
2025-11-20 10:11:19 2.43MB 数据集
1
深度学习技术已经在多个领域展现出其强大的能力,其中之一就是农业病虫害的图像识别。通过深度学习模型,尤其是YOLO(You Only Look Once)算法,研究人员能够快速准确地识别和分类植物叶片上的病虫害。这种技术的应用不仅可以提高病虫害诊断的速度和准确性,还能为农作物的保护提供科学依据。 YOLO算法是一种实时的对象检测系统,它将目标检测任务视为一个单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。与传统的卷积神经网络(CNN)相比,YOLO在检测速度上有显著优势,适用于实时视频流处理。对于病虫害数据集而言,YOLO算法能够快速准确地定位并识别病斑、虫蛀等异常区域。 在“yolo/深度学习病虫害数据集”中,数据集可能包含了大量经过数据增强处理的植物叶片图像。数据增强是一种提升模型泛化能力的技术,通过对原始数据进行变换(如旋转、翻转、缩放、裁剪等),人为地增加数据的多样性和数量,从而减少模型对训练数据过拟合的风险,提高模型在未知数据上的表现。 压缩文件中的“Plant_leave_diseases_dataset_with_augmentation”可能包含了如下类型的数据文件: 1. 原始图像文件:记录了不同植物叶片的真实图像,这些图像可能已经被标注,即在图像中病虫害区域被精确地圈出来,并标有相应的类别。 2. 增强图像文件:这些文件是原始图像经过各种数据增强技术处理后的结果,目的是为了增加数据集的多样性和数量,从而提高模型的鲁棒性。 3. 标注信息文件:包含了图像中每个病虫害区域的标注信息,如边界框的位置和病虫害的类别标签。这类信息对于训练深度学习模型是必不可少的。 4. 训练/测试分割文件:可能包含了将数据集分为训练集和测试集的分割信息,确保模型在未见过的数据上也有良好的泛化能力。 5. 其他可能包含的文件:比如数据集的元信息文件,记录了数据集的构建过程、使用说明、数据来源、授权协议等。 通过对该数据集的深入研究和应用,研究人员可以训练出能够有效识别植物病虫害的深度学习模型。这将极大地助力于农业病虫害的早期检测与防控,为智慧农业的发展提供技术支撑。比如,这样的模型可以集成到无人机或者田间监控系统中,实现对作物健康的实时监测。此外,这种技术还有助于减少农药的过量使用,对环境的可持续发展也具有积极意义。 yolo/深度学习病虫害数据集是推动农业生产智能化、数字化的关键资源之一。通过集成了数据增强技术的数据集训练得到的YOLO模型,可为精准农业提供有力的技术保障,促进农业生产力的提升和资源的合理利用。
2025-11-19 18:33:20 906.12MB
1
本数据集包含了24648张关于轮船和船舶的原始图片,这些图片采用了YOLO v11格式进行标注。YOLO(You Only Look Once)是一种广泛使用的实时对象检测系统,它能够在给定图片中快速准确地识别出多种对象。YOLO v11作为该系统的最新版本之一,想必在目标检测和识别上具有更高的精确度和效率。由于标注格式的统一,这些图片可以被用于训练深度学习模型,尤其是卷积神经网络(CNN),来达到高达99%的识别率。 数据集通常由两部分组成:训练集(train)和验证集(valid)。训练集用于训练深度学习模型,模型会在这些数据上学习如何识别和分类不同的对象。而验证集则用于评估模型的性能,通过在未见过的数据上测试模型来预测其泛化能力。在这种情况下,数据集分为“train”和“valid”两个文件夹,意味着用户可以使用这些图片对模型进行训练和验证,从而优化模型参数,最终实现高效的船舶识别。 由于轮船和船舶属于海事领域的特定对象,该数据集在海事监控、海上交通管理、港口安全检查以及环境监测等多个领域具有潜在的应用价值。例如,在海事监控中,可以使用该数据集训练的模型实时识别和追踪海上船舶的动态,对于保障航道安全和提高救援效率具有重要意义。在港口安全检查中,该技术可以自动化地检测进入港口的船舶,提高检查效率和准确性。 在深度学习和计算机视觉领域,该数据集可用于开发和测试新的算法,尤其是针对特定场景的对象检测和分类技术。研究者可以利用这些图片进行模型训练,对比不同算法的性能,探索更高效的特征提取和目标识别方法。此外,对于初学者和学生来说,这是一个宝贵的学习资源,可以帮助他们理解和掌握图像识别和机器学习的基本概念和技术。 该数据集通过提供大量的标记良好的轮船和船舶图片,为相关领域的研究者、工程师以及学生提供了一个高质量的资源库。利用这些数据,可以训练出精确的模型来识别和分类图像中的船舶,从而推动海事安全和智能监控技术的发展。
2025-11-18 22:54:45 565.2MB
1
根据提供的文件信息,我们可以提取以下知识点: 1. 数据集名称:本数据集被命名为“光栅检测数据集”,并且是以VOC和YOLO格式提供的。 2. 数据集格式:该数据集提供了两种格式的标注方式,即Pascal VOC格式和YOLO格式。这意味着该数据集可以被用于不同的目标检测框架。 3. 文件内容与结构: - 数据集包含153张jpg格式的图片。 - 每张图片对应一个VOC格式的xml文件,用于Pascal VOC格式的标注。 - 同时每张图片也对应一个YOLO格式的txt文件,用于YOLO格式的标注。 - 文件集中不包含分割路径的txt文件,这意味着数据集不包含图像分割任务所需的数据。 4. 标注信息: - 数据集中标注的类别总数为1。 - 标注的类别名称为“guangshan”。 - “guangshan”类别的标注框数为276,表示在这个数据集中,标注工具共绘制了276个矩形框来标定“guangshan”类别的目标。 - 总框数为276,表明整个数据集中的目标数量即为276。 5. 标注工具和规则:数据集使用了labelImg这一常用的图像标注工具。标注规则是采用矩形框对目标进行标注。 6. 数据集的使用声明: - 数据集提供者声明,他们对使用该数据集训练的模型或权重文件的精度不作任何保证。 - 数据集只提供准确且合理标注的图片和标注信息,即数据集的质量保证仅限于数据的准确性和合理性。 7. 特别说明:文档中提到暂无任何特别说明,意味着文件中没有额外提供关于数据集使用条件、版权信息或其他附加信息。 8. 标注示例:文档提到了将会提供标注示例,这可能用于展示如何正确使用标注工具labelImg进行标注,以及标注文件的具体结构和格式。 总结以上知识点,本数据集为一个针对单一类别“guangshan”的光栅检测任务所设计的数据集,具有153张图片和相应的标注文件,按照Pascal VOC格式和YOLO格式进行标注,提供图像标注的矩形框示例,以及使用labelImg工具进行标注的规则。但需注意,数据集的提供者对最终模型训练结果的精度不予保证。
2025-11-18 11:14:08 762KB 数据集
1
遥感技术在滑坡检测中的应用是地质灾害监测的重要组成部分,能够有效提升对滑坡事件的快速响应能力。随着深度学习技术的发展,YOLO(You Only Look Once)算法因其速度快、准确率高的特点,在物体检测领域得到了广泛应用。本数据集“遥感滑坡检测数据集VOC+YOLO格式3588张1类别.zip”正是为此目的设计,它包含了3588张遥感图像及其标注信息,专门针对滑坡检测这一特定类别进行标注,格式遵循VOC(Visual Object Classes)和YOLO两种标准,方便研究者进行模型训练和评估。 VOC格式是一种广泛使用的图像标注格式,它定义了用于描述图像中对象的位置、大小和类别的XML文件结构。而YOLO格式则是一种直接用于YOLO算法训练的标注格式,它将标注信息简化为文本文件,每行代表一个对象,包含类别ID和对象中心点坐标、宽度及高度等信息,使得YOLO算法可以直接读取并用于快速训练。 数据集通常用于机器学习和深度学习模型的训练和验证。在深度学习领域,数据集的规模和质量直接影响到模型性能。本数据集共包含3588张图像,这为训练一个能够准确识别滑坡现象的深度学习模型提供了足够的样本量。此外,由于数据集只包含一个类别,即滑坡,因此它在特定任务的场景下能够提供更加专注的训练,有助于提高模型对于滑坡识别的精确度。 通过使用本数据集,研究人员可以开发出更为精确和快速的滑坡检测模型,从而在实际应用中,如灾害预防、城市规划和应急响应等领域发挥重要作用。在模型训练完成后,研究人员可以将模型部署在实时监控系统中,利用遥感图像来自动识别潜在的滑坡风险,及时发出警报,减少滑坡灾害可能造成的损失。 由于本数据集是以VOC和YOLO两种格式提供的,研究者可以根据自己的需要选择适合的格式进行数据处理。VOC格式由于其详细性和规范性,在图像处理中具有很好的通用性,适用于多种图像识别任务。而YOLO格式则因其简洁高效,特别适用于需要实时处理的应用场景。 这份数据集为滑坡检测提供了一个强大的研究和开发平台,能够促进相关技术的发展,并在实际应用中发挥重要的作用。通过对数据集的有效利用,可以提高地质灾害监测和预防的能力,为相关领域的研究和决策提供数据支持。
2025-11-18 10:09:44 415B 数据集
1
在IT领域,目标检测是一项关键的技术,特别是在计算机视觉和机器学习中。本数据集专注于船只检测,使用了流行的YOLO(You Only Look Once)算法,这是一种实时的目标检测系统,以其高效性和准确性而闻名。 我们需要理解YOLO算法。YOLO是一种基于深度学习的一阶段目标检测方法,它将目标检测问题转化为一个回归问题,直接预测边界框和类别概率。与两阶段方法(如R-CNN系列)相比,YOLO避免了繁重的候选区域生成步骤,从而实现了更快的检测速度。 该数据集包含5085张图片,每张图片都已使用YOLO格式进行标注。YOLO的标注文件是文本文件,通常与图像文件同名,但扩展名为.txt。这些文件包含了图像中每个目标的坐标(边界框)以及对应的类别ID。在本例中,类别ID为0,表示所有标注的对象都是船只。YOLO的边界框用四个数值表示:(x, y, width, height),其中(x, y)是边界框左上角的坐标,width和height是边界框的宽度和高度,均相对于图像的宽度和高度。 对于训练YOLO模型,这些标注数据至关重要。模型会学习从输入图像中识别出这些特征,并预测出类似的边界框。数据集的大小——5085张图片——对于训练一个准确的模型来说是相当充足的,因为深度学习模型通常需要大量数据来学习复杂的模式。 在训练过程中,通常会将数据集分为训练集、验证集和测试集,以便监控模型的性能并防止过拟合。训练集用于教会模型识别目标,验证集用于调整超参数和模型结构,而测试集则在模型最终确定后用于评估其泛化能力。 "labels"目录可能包含了所有5085个YOLO格式的标注文件,而"images"目录则存储了相应的图像文件。为了训练YOLO模型,开发人员需要将这两个目录与YOLO的训练脚本结合,设置正确的参数,如学习率、批大小、训练迭代次数等。 此外,预处理步骤也很重要,包括图像的缩放、归一化以及可能的数据增强技术,如翻转、旋转和裁剪,以增加模型的鲁棒性。训练完成后,模型可以应用于实时视频流或新的图像,自动检测并标记出船只。 这个"船只数据集yolo目标检测"提供了训练YOLO模型进行船只检测所需的一切资源。通过理解和应用这些知识,开发者可以创建一个能够有效地在各种场景中识别船只的AI系统,这对于海洋监测、安全监控和自动驾驶船舶等领域都有潜在的应用价值。
2025-11-16 14:34:11 830.25MB 数据集 目标检测
1
样本图:blog.csdn.net/2403_88102872/article/details/144420956 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 重要说明:此为小目标检测训练模型精度可能偏低属于正常现象 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1395 标注数量(xml文件个数):1395 标注数量(txt文件个数):1395 标注类别数:5 标注类别名称:["Broken","Crack","Dent","Scratch","Spot"]
2025-11-13 22:13:15 407B 数据集
1
剪刀石头布检测数据集是一个面向目标检测任务的标注数据集,它包含1973张图片,这些图片被划分为三个类别,即剪刀、石头和布。数据集采用Pascal VOC格式和YOLO格式,提供了对应的标注文件,包括.xml文件和.txt文件,这些文件与.jpg图片一一对应。 数据集中的图片数量与标注文件数量都是1973个,说明每张图片都有相应的标注信息。在标注过程中,使用了名为labelImg的工具,它是广泛应用于目标检测任务的图像标注软件。在标注规则方面,该数据集采用矩形框来标注图片中的对象,这种做法在目标检测中是常见的,因为矩形框可以清晰地定义出目标对象在图片中的位置和尺寸。 标注类别总数为3,分别对应着三种手势:剪刀(bu)、石头(jiandao)、布(shitou)。每一个类别中的目标对象数量也有所提及,其中“剪刀”类别的目标框数为609个,“石头”为679个,“布”为685个。标注的总框数为1973,这表明数据集中的每张图片都至少包含一个矩形框,框中是对应该图片中手势的位置。 此外,数据集的标注类别名称分别用中文进行了命名,即“剪刀”、“石头”和“布”,这可能是为了便于理解标注者的意图,也可能是为了适应某些需要中文标签的特定应用场景。在数据集的使用方面,虽然提供了图片及其标注,但是制作者明确声明,他们不对由此数据集训练得到的模型或权重文件的精度作任何保证。这提示使用者,在应用数据集进行模型训练之前需要仔细检查标注的准确性,并可能需要进一步的数据清洗和增强步骤。 这份数据集非常适合用于机器学习和计算机视觉中目标检测模型的训练和验证,尤其是那些涉及手势识别、图像分类和实时对象检测的应用。由于其涵盖的手势种类有限,因此它也是一个入门级别的数据集,便于研究人员和开发者测试和调试他们的算法。 数据集的提供者没有提及任何特定的版权信息或使用限制,这可能意味着该数据集可以被广泛使用于学术研究和商业开发。不过,对于任何商业用途,建议还是先确认数据集的具体使用条款,以避免潜在的法律问题。此外,考虑到数据集的标注质量直接关系到最终模型的性能,使用者应当对标注进行仔细的审查和必要的修正,确保数据集的高质量能够帮助模型训练达到预期的效果。
2025-11-13 17:52:33 2.38MB 数据集
1
文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/144125917 重要说明:数据集里面有很多增强图片请查看图片预览 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):7958 标注数量(xml文件个数):7958 标注数量(txt文件个数):7958 标注类别数:9 标注类别名称:["Gloves","Helmet","Person","Safety Boot","Safety Vest","bare-arms","no-boot","no-helmet","no-vest"]
2025-11-13 10:04:20 407B 数据集
1
350多幅苹果树上自然生长的苹果图像yolo-v8数据集 由Roboflow用户提供 注释数据集包含350多幅苹果树上自然生长的苹果图像。与其他现有的套装不同,这套套装试图捕捉白天自然光照射不同的树上生长的苹果。 训练数据由彼得·布洛赫家中苹果树的77张照片组成。照片拍摄后,将其分割成多个较小的图像,每个图像的分辨率为360×640像素。此数字被选为稍后在该项目中使用的CV摄影机的最低自然分辨率。
2025-11-12 04:53:46 66.63MB 数据集
1