内容概要:本文介绍了基于GADF(格拉姆角场)和Transformer的轴承故障诊断模型。首先解释了GADF的作用及其在捕捉轴承旋转角度变化中的重要性,然后探讨了Transformer如何通过自注意力机制对GADF生成的图像进行分析,从而实现故障识别和分类。文中还提及了小波变换(DWT)和短时傅立叶变换(STFT)两种额外的数据转换方法,它们能提供时间-频率双域表示和局部频率变化捕捉,丰富了数据表达方式。最后,文章展示了具体代码实现和验证过程,强调了模型的可调性和优化潜力。 适合人群:从事机械设备维护、故障诊断的研究人员和技术人员,尤其是对深度学习和信号处理有一定了解的人群。 使用场景及目标:适用于需要对复杂机械设备进行高效故障检测的工业环境,旨在提升设备运行的安全性和可靠性。 其他说明:附带完整的代码和说明文件,便于读者理解和复现实验结果。
2025-09-22 23:47:00 913KB
1
Shap解释Transformer多分类模型,并且基于shap库对transformer模型(pytorch搭建)进行解释,绘制变量重要性汇总图、自变量重要性、瀑布图、热图等等 因为是分类模型,所以只用到了Transformer的Encoder模块,使用了4层encoder和1层全连接网络的结果,没有用embedding,因为自变量本身就有15个维度,而且全是数值,相当于自带embedding 代码架构说明: 第一步:数据处理 数据是从nhanes数据库中下载的,自变量有15个,因变量1个,每个样本看成维度为15的单词即可,建模前进行了归一化处理 第二步:构建transformer模型,包括4层encoder层和1层全连接层 第三步:评估模型,计算测试集的recall、f1、kappa、pre等 第四步:shap解释,用kernel解释器(适用于任意机器学习模型)对transformer模型进行解释,并且分别绘制每个分类下,自变量重要性汇总图、自变量重要性柱状图、单个变量的依赖图、单个变量的力图、单个样本的决策图、多个样本的决策图、热图、单个样本的解释图等8类图片 代码注释详细,逻辑
2025-09-22 20:43:22 4.78MB xhtml
1
内容概要:本文介绍了基于MATLAB实现的Transformer-SVM组合模型在多特征分类预测中的应用。项目背景在于数据时代对高效分类预测的需求,特别是处理高维、多模态、多噪声数据的挑战。Transformer凭借自注意力机制捕捉全局信息,SVM则擅长高维空间分类,二者结合提升了多特征数据分类的准确性和鲁棒性。项目通过MATLAB实现数据预处理、Transformer特征提取、SVM分类、模型集成与优化、预测输出等模块,展示了在不同领域的广泛应用,如医学影像分析、金融风控、营销推荐、社交媒体分析及智能制造。; 适合人群:对机器学习和深度学习有一定了解,尤其是希望掌握多特征分类预测技术的研究人员和工程师。; 使用场景及目标:①适用于处理高维、多模态、多噪声数据的分类预测任务;②提高模型在复杂数据集上的分类精度和泛化能力;③应用于医学、金融、营销、社交、制造等多个领域,提供精准的数据分析和决策支持。; 阅读建议:本项目涉及Transformer和SVM的深度融合及其实现细节,建议读者具备一定的MATLAB编程基础和机器学习理论知识。在学习过程中,结合代码示例进行实践,关注特征提取与分类模块的设计,以及模型调优和集成学习的应用。
2025-09-22 20:05:59 35KB MATLAB Transformer 机器学习
1
AUTOSAR_SWS_SOMEIPTransformer PDF规范与逻辑图一键下载
2025-09-22 15:20:35 3.02MB AUTOSAR SOMEIP
1
近年来,随着自动驾驶技术的快速发展,对车辆行为理解的准确性提出了更高的要求。其中,车辆换道行为作为道路交通中常见的复杂动态行为,成为了研究的热点。基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,结合了图卷积网络(GCN)和Transformer模型的优势,提出了一种新颖的解决方案,旨在提高预测的准确性和实时性。 图卷积网络(GCN)在处理非欧几里得数据方面表现卓越,尤其适合处理图结构数据。在车辆换道行为建模中,GCN可以有效地捕捉车辆与周围车辆之间的空间关系和交互作用。通过图结构表示交通网络,GCN能够对车辆之间的相对位置、速度和加速度等动态特征进行编码,从而学习到车辆行为的局部特征表示。 Transformer模型最初被设计用于自然语言处理(NLP)领域,尤其是序列到序列的学习任务。Transformer的核心在于自注意力(Self-Attention)机制,该机制能够让模型在处理序列数据时,考虑到序列内各元素之间的长距离依赖关系,这对于序列预测问题来说至关重要。在车辆换道预测任务中,Transformer可以帮助模型捕捉时间序列上的特征,如车辆的历史轨迹、速度变化趋势等,从而生成更准确的未来轨迹预测。 结合GCN和Transformer,研究人员提出了多种方法来优化车辆换道行为的建模与轨迹预测。一种常见的方法是将GCN用于构建车辆之间相互作用的图结构,然后利用Transformer来处理时间序列数据。GCN负责编码车辆之间的空间关系,而Transformer则关注于时间序列的动态变化。此外,研究人员还可能引入注意力机制来进一步优化模型的性能,使得模型在预测时更加关注与换道行为相关的车辆和其他环境因素。 在实际应用中,基于GCN-Transformer的模型能够为车辆提供连续的轨迹预测,这对于提高自动驾驶系统的决策能力至关重要。通过提前预知周围车辆的潜在换道行为,自动驾驶车辆可以更好地规划自己的行驶路线和行为,从而提高道路安全性和交通流的效率。 此外,基于GCN-Transformer的模型在处理大规模交通场景时表现出色。大规模交通网络中包含成千上万辆车,这些车辆的轨迹和行为相互影响,形成复杂的动态系统。GCN能够有效地处理这种大规模网络中的信息,而Transformer则保证了对长时间序列的分析能力。因此,该方法对于理解和预测复杂交通场景中的车辆行为具有重要的应用价值。 基于GCN-Transformer的车辆换道行为建模与轨迹预测方法,通过结合空间关系建模能力和时间序列分析能力,为车辆换道预测提供了一种强大的技术手段。这种技术不仅能够提升自动驾驶系统的性能,还能在智能交通管理和城市规划等领域发挥重要作用。
2025-09-16 19:38:54 3.62MB
1
内容概要:本文介绍了基于MATLAB实现TCN-Transformer的时间序列预测项目。文章首先阐述了时间序列预测的重要性及其传统方法的局限性,随后详细描述了TCN和Transformer结合的优势,如提高预测精度、降低计算复杂度、增强泛化能力和解决数据稀缺问题。文中列举了项目面临的挑战,包括模型复杂性、计算资源消耗、模型优化难度、数据质量问题、长时序建模困难和解释性问题。此外,文章还强调了该项目的创新点,如创新性模型架构、多尺度时间序列特征提取、自注意力机制的引入、模型并行化训练、跨领域适用性和模型可扩展性。最后,文章展示了该模型在金融、气候预测、电力调度、医疗健康、交通运输、智能制造和营销需求预测等多个领域的应用前景,并提供了MATLAB中的模型架构及代码示例。; 适合人群:对时间序列预测有兴趣的研究人员、数据科学家以及具备一定编程基础并希望深入了解深度学习模型在时间序列预测中应用的从业者。; 使用场景及目标:①提高时间序列预测的准确性和泛化能力;②解决长序列数据处理中的计算瓶颈;③为金融、气候预测、电力调度、医疗健康等多个领域提供智能化决策支持;④通过MATLAB代码示例,帮助用户快速理解和实现TCN-Transformer模型。; 阅读建议:此资源详细介绍了TCN-Transformer模型在时间序列预测中的应用,不仅涵盖理论背景和创新点,还包括具体的模型架构和代码示例。建议读者在学习过程中结合理论与实践,逐步掌握模型的设计与实现,并尝试调整参数以优化预测效果。
1
PatchTST模型:自监督时间序列预测的革新与高精度应用,PatchTST模型:基于Transformer的自监督时间序列预测模型,单多输入输出兼顾,局部特征与多维序列的精确表征,PatchTST模型无监督、自监督(Patch Time series Transformer)时间序列预测。 单输入单输出,多输入多输出,精度极高。 该模型基于基础transformer模型进行魔改,主要的贡献有三个: 1.通过Patch来缩短序列长度,表征序列的局部特征。 2.Channel Independent的方式来处理多个单维时间序列 3.更自然的Self-Supervised 方式 ,PatchTST模型;自监督;时间序列预测;Patch;多输入多输出;高精度;局部特征表征;通道独立处理;自然自监督方式。,PatchTST:高效自监督时间序列预测模型
2025-08-27 09:54:05 844KB
1
可以使用自己的数据集,若使用自己的数据集,需要先对label进行voc格式转换,代码位于tools文件夹下voc.py,使用流程为使用train脚本训练网络,使用prediction脚本输出分割结果。图片位于data文件夹下,可以更换为自己的数据集,但需要保持图片为灰度图片,详情见:https://blog.csdn.net/qq_52060635/article/details/134148448?spm=1001.2014.3001.5502 初始任务为医学图像分割,可以用于其他图像处理。 详情见:https://blog.csdn.net/qq_52060635/article/details/134149072?spm=1001.2014.3001.5502 包含滑窗操作,具有层级设计的Swin Transformer滑窗操作包括不重叠的local window,和重叠的cross-window。将注意力计算限制在一个窗口中,一方面能引入CNN卷积操作的局部性,另一方面能节省计算量。
1
内容概要:本文详细介绍了使用Matlab实现CNN-Transformer多变量回归预测的项目实例。项目旨在应对传统回归模型难以捕捉复杂非线性关系和时序依赖的问题,通过结合CNN和Transformer模型的优势,设计了一个能够自动提取特征、捕捉长时间依赖关系的混合架构。该模型在处理多维度输入和复杂时序数据方面表现出色,适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多个领域。文中还列举了项目面临的挑战,如数据预处理复杂性、高计算开销、模型调优难度等,并给出了详细的模型架构及代码示例,包括数据预处理、卷积层、Transformer层、全连接层和输出层的设计与实现。; 适合人群:对深度学习、时间序列预测感兴趣的科研人员、高校学生以及有一定编程基础的数据科学家。; 使用场景及目标:①适用于金融市场预测、气候变化建模、交通流量预测、智能制造和医疗健康预测等多领域的时间序列回归预测任务;②通过结合CNN和Transformer模型,实现自动特征提取、捕捉长时间依赖关系,增强回归性能和提高泛化能力。; 其他说明:此项目不仅提供了详细的模型架构和代码示例,还强调了项目实施过程中可能遇到的挑战及解决方案,有助于读者深入理解模型的工作原理并在实际应用中进行优化。
2025-08-11 11:29:20 36KB Transformer Matlab 多变量回归 深度学习
1
内容概要:本文详细介绍了如何使用MATLAB实现一个基于贝叶斯优化的Transformer-BiGRU分类模型。首先简述了Transformer和BiGRU的基本原理及其在处理时序数据方面的优势。接着,文章深入讲解了贝叶斯优化的概念及其在参数调优中的应用。随后提供了完整的MATLAB代码框架,涵盖数据加载与预处理、模型定义、贝叶斯优化、模型训练与预测、结果可视化的各个环节。通过具体实例展示了该模型在光伏功率预测等场景中的优越表现。 适合人群:对机器学习和深度学习感兴趣的研究人员和技术爱好者,特别是有一定MATLAB基础的初学者。 使用场景及目标:适用于需要处理时序数据的任务,如光伏功率预测、负荷预测等。目标是帮助读者理解和实现一个高效的时序数据分析工具,提高预测精度。 其他说明:文中提供的代码框架简洁明了,附带详细的注释和直观的图表展示,便于快速上手。同时提醒了一些常见的注意事项,如数据归一化、环境配置等,确保代码顺利运行。
2025-08-08 23:18:42 3.17MB
1