python使用与内在逻辑.xmind
2021-09-06 17:20:18 446KB 思维导图 python 深度学习 DETR
1
PyTorch 训练代码和 DETR(检测转换器)的预训练模型。 我们用 Transformer 替换了完全复杂的手工对象检测管道,并将 Faster R-CNN 与 ResNet-50 匹配,使用一半的计算能力 (FLOP) 和相同数量的参数在 COCO 上获得 42 个 AP。 50 行 PyTorch 中的推理。 这是什么。 与传统的计算机视觉技术不同,DETR 将目标检测作为直接集预测问题来处理。 它由一个基于集合的全局损失和一个 Transformer 编码器-解码器架构组成,它通过二分匹配强制进行独特的预测。 给定一组固定的学习对象查询集,DETR 会推理对象和全局图像上下文的关系,以直接并行输出最终的预测集。 由于这种并行特性,DETR 非常快速和高效。
2021-08-07 18:09:18 237KB 开源软件
1
DE⫶TR :使用变压器进行端到端物体检测 PyTorch的DETR ( DE tection TR ansformer)训练代码和预训练模型。 我们用变压器代替了整个复杂的手工物体检测管道,并用ResNet-50匹配了Faster R-CNN,使用一半的计算能力(FLOP)和相同数量的参数在COCO上获得了42个AP 。 在PyTorch的50行中进行推断。 这是什么。 与传统的计算机视觉技术不同,DETR将对象检测作为直接设置的预测问题。 它由基于集合的全局损耗(通过二分匹配强制唯一预测)和变压器编码器-解码器体系结构组成。 给定固定的学习对象查询集,则DETR会考虑对象与全局图像上下文之间的关系,以直接并行并行输出最终的预测集。 由于这种并行性质,DETR非常快速和有效。 关于代码。 我们认为,对象检测不应该比分类困难,也不需要复杂的库来进行训练和推理。 DETR的实现和试验非常
2021-05-11 20:59:30 239KB Python
1