由于风电存在着不确定性,风电功率预测对于接入大量风电的电力系统意义重大。为了提高风电功率的预测精度,本文建立了基于经验模式分解法(EMD)与支持向量机(SVM)的复合预测模型。考虑到风力机组的输出有很强的非线性,该模型首先将训练数据按风速大小分成高、中、低3组,然后对各组的风电功率样本序列进行经验模式分解,并建立各个频带分量的支持向量机预测模型,各模型的预测结果等权求和即得到最终的功率预测值。使用风电场现场采集数据的预测结果,验证了该方法的可行性和有效性。
2022-03-05 16:32:37 628KB 自然科学 论文
1
针对风电功率预测问题,在现有预测方法和概率性区间预测的基础上,提出基于深度学习分位数回归的风电功率概率预测方法。该方法采用Adam随机梯度下降法在不同分位数条件下对长短期记忆神经网络(LSTM)的输入、遗忘、记忆、输出参数进行估计,得出未来200 h内各个时刻风电功率的概率密度函数。根据美国PJM网上的风电功率实际数据的仿真结果表明,所提方法不仅能得出较为精确的点预测结果,而且能够获得风电功率完整的概率密度函数预测结果。与神经网络分位数回归相比,其精度更高,且在同等置信度下的预测区间范围更小。
1
由于风电功率预测的局限性,难以准确而有效地刻画风电功率的概率分布函数,提出考虑风电功率概率分布不确定性的含风电配电网无功规划方法。该方法可有效应用于风电概率分布集合中的任意分布情况,在一定概率约束下保证配电网的安全运行要求,同时最小化配电网网损和无功设备投资成本之和。采用概率分布鲁棒机会约束模型描述含风电的配电网无功规划问题,根据潮流平衡等式分离节点电压和支路功率约束中的随机向量,根据条件风险价值(CVaR)的物理意义构建关于节点电压约束和支路功率约束的CVaR模型,利用对偶优化、Schur补和S-lemma的性质将该模型转化为确定性的双线性矩阵不等式(BMI)问题。采用基于BMI优化的免疫粒子群算法求解该问题。改进的IEEE 33节点配电系统仿真结果验证了所提无功规划方法的可行性和有效性。
1
受风速随机变化的影响,风电输出功率具有波动性。为了平抑风电输出功率的波动,在配置电池储能系统的基础上,文中基于风电短期平均功率预测技术,以风电时间周期T的平均功率为对象,采用时间序列法进行预测,实时滚动预测未来每个时间周期T的平均功率,结合平抑度要求和电池荷电状态限制条件,控制并网功率在每个时间周期T都保持在平均功率附近的可接受范围内,分段平抑功率波动。其中,根据电网对风电功率波动的可接受程度,设置平抑度,为防止电池过充放电,对电池SOC进行限制。最后以某风电场的实际历史数据为例,在Matlab中进行了仿真分析,验证了所述方法的有效性。
1
【预测模型-BP预测】基于麻雀算法SSA优化BP神经网络实现风电功率预测matlab源码.pdf
2021-11-23 18:56:46 1.03MB matlab代码
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2021-11-23 15:07:01 742KB matlab
1
NWP 的风速、风向、温度、湿度、压强这 5 类典型特征,且多数在单位置 NWP 的基础上建立。因此,为充分利用NWP 信息,研究了 NWP 非典型特征的可用性,并考虑了多个位置的 NWP 信息。在考虑多位置 NWP 及非典型特征时,提出了以最大相关-最小冗余原则提取输入变量的预测方法,并和通过主成分分析提取的方法进行对比。结果表明,多位置 NWP 和非典型特征均包含有效信息,有利于提高预测精度。
2021-11-22 20:30:13 851KB 论文  NWP 风电功率
1
【预测模型-BP预测】基于麻雀算法SSA优化BP神经网络实现风电功率预测matlab源码.zip
2021-10-31 18:07:57 1010KB 简介
1