matlab人脸特征定位代码SpecDiff欺骗检测器 该存储库包含一个示例代码,该示例代码计算出我们的IJCB论文中提出的SpecDiff描述符,以执行面部表情攻击(欺骗)检测。 SpecDiff描述符利用面部图像的镜面反射和漫反射,无需大型训练数据库或高性能计算系统,即可进行快速,准确的欺骗检测。 *十月2020年更新:我们的论文获得了IJCB 2020 Google PC Chairs Choice最佳论文奖。 经过测试的计算环境 MATLAB R2017b 示例代码教程 运行主脚本“ SpecDiff_main.m”。 该脚本会加载一对示例照片(使用闪光灯和不使用闪光灯拍摄),以计算SpecDiff描述符。 带有径向基函数(RBF)内核的支持向量机(SVM)将描述符分为实时或欺骗两种类别之一。 分类分数的正值和负值分别表示实时分类和欺骗分类。 结果图 文件和目录 SpecDiff_main.m 主脚本将预处理应用于示例照片对,并将其分类为实时或欺骗类。 load_facial_images.m 加载一对面部照片,一张带有闪光灯,另一张不带有闪光灯。 预处理程序 应用本文中描述的
2023-03-19 17:18:39 47.17MB 系统开源
1
介绍 FOXTracker是一款用于游戏的面部头部跟踪器。 作为执行或TrackIR 作为飞行模拟游戏,如DCS轨道摄像机控制器(pointtracker)。 先决条件 普通的网络摄像机。 建议立即安装 。 Windows 10 x64是唯一受支持的平台。 用法 该程序仍在开发中,尚未稳定。 我将永远不会从您的相机收集任何用户数据。 在下载FOXTracker 该程序直接支持控制游戏或使用Opentrack作为后端。 目前,样条函数正在开发中,因此使用Opentrack是个好主意。 如果您单独使用此程序,请修改config或config.yaml。 只需将您的opentrack输入转换为UDP,然后打开FlightAgentX.exe。 一切正常。 另外,您可以在此处使用 。 可以在上找到视频 中文评论 未来计划(可能一年) 尝试增强跟踪器的功能。 将添加样条函数。 执
2023-03-17 23:19:34 141.87MB tracker flight-simulator dcs dcs-world
1
面部防喷雾剂 使用CASIA-SURF CeFA数据集, 和脸反欺骗任务解决方案。 模型 M,参数 计算复杂度,MFLOP 红绿蓝 深度 红外 损失函数 最佳LR 最低ACER(CASIA-SURF值) 快照 羽毛网 0.35 79.99 :check_mark: :cross_mark: :cross_mark: 交叉熵 3e-6 0.0242 羽毛网 0.35 79.99 :check_mark: :check_mark: :cross_mark: 交叉熵 3e-6 0.0174 羽毛网 0.35 79.99 :check_mark: :check_mark: :check_mark: 交叉熵 1e-7 0.0397 下载 羽毛网 0.35 79.99 :check_mark: :cross_mark: :cross_mark: 失焦 3e-6 0.0066 下载 MobileLiteNet 0.57 270.91 :check_mark: :cross_mark: :cross_m
2023-03-11 16:08:52 22.44MB computer-vision deep-learning pytorch anti-spoofing
1
锁定/解锁Ubuntu OS 介绍 我们可以使用面部识别来锁定和解锁我们的Ubuntu系统(目前仅在Ubuntu上)。 关于实施的文章 演示版 要求 安装在本地计算机中所需的库下面。 python 3.7 的opencv 4.1.0 麻木 人脸识别 sudo apt-get安装gnome-screensaver sudo apt-get安装xdotool 快速开始 我使用了三个python文件来解决此问题。 face_generate.py这将检测到您的脸并将其保存在数据集文件夹中,然后将使用您的名字创建新文件夹。 face_train.py这个python文件将打开数据集文件夹并
2023-02-27 21:43:38 14.91MB opencv computer-vision ubuntu numpy
1
facial_keypoint 用于面部关键点检测的Kaggle数据集。 清理数据,将图像列分离出一个数组以读取RGB值,然后将数据集分为X和Y值进行学习,使用20%的比例进行测试。 最后,实现了一个具有三个卷积层和两个密集层以及最终密集层作为输出的卷积神经网络。 尚未实施:Tensorboard以提高模型的准确性和损失。
2023-02-07 14:35:07 62KB JupyterNotebook
1
OpenPose代表了第一个在单幅图像上联合检测人体、手部、面部和足部关键点(共 135 个关键点)的实时多人系统。 特征 主要功能: 2D实时多人关键点检测: 15、18 或25 关键点身体/脚关键点估计,包括6 脚关键点。运行时对检测到的人数不变。 2x21-keypoint 手部关键点估计。运行时间取决于检测到的人数。有关运行时不变的替代方案,请参阅OpenPose 训练。 70-keypoint 人脸关键点估计。运行时间取决于检测到的人数。有关运行时不变的替代方案,请参阅OpenPose 训练。 3D实时单人关键点检测: 来自多个单一视图的 3D 三角测量。 已处理 Flir 相机的同步。 兼容 Flir/Point Grey 相机。 校准工具箱:失真、内在和外在相机参数的估计。 单人跟踪以进一步加速或视觉平滑。 输入:图像、视频、网络摄像头、Flir/Point Grey、IP 摄像头,并支持添加您自己的自定义输入源(例如深度摄像头)。 输出:基本图像+关键点显示/保存(PNG,JPG,AVI,...),关键点保存(JSON,XML,YML,...),关键点作为数组类,
2023-01-04 17:28:54 46.7MB OpenPose CV Caffe 检测库
1
皮特·菲特 Python面部表情分析工具箱(FEAT) Py-FEAT是一套用Python编写的面部表情(FEX)研究套件。 该软件包包括用于从面部视频和图像中检测面部,提取情感面部表情(例如幸福,悲伤,愤怒),面部肌肉运动(例如动作单位)和面部标志的工具以及预处理方法,分析和可视化FEX数据。 有关详细的示例,教程和API,请。 安装 选项1:易于安装,可快速使用克隆存储库pip install py-feat 选项2:以开发模式安装 git clone https://github.com/cosanlab/feat.git cd feat && python setup.py install -e . 用法示例 1.从图像或视频中检测FEX数据 FEAT旨在在Jupyter Notebook或Jupyter Lab环境中使用。 在笔记本单元中,您可以运行以下命令从图像或视频中
2022-12-28 21:52:19 23.51MB JupyterNotebook
1
面部表情动作迁移+唇形同步Jupyter源码(需安装docker,附演示视频)+操作说明.zip 面部表情动作迁移+唇形同步Jupyter源码(需安装docker,附演示视频)+操作说明.zip 面部表情动作迁移+唇形同步Jupyter源码(需安装docker,附演示视频)+操作说明.zip 假设你已经熟悉 docker 并且已经正确安装 docker,执行以下步骤,开箱即用(浏览器输入:http://localhost:8899) # 1. pull image & run container ./start_dev.sh # 2. 进入 container 运行时环境 docker exec -it dev bash # 3. 启动 notebook ./start_jupyterlab.sh 在浏览器中打开 jupyterlab http://localhost:8899
Pytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorch实现基于卷积神经网络的面部表情识别数据集(只含数据集).zipPytorc
2022-12-21 16:28:35 849.41MB 面部表情识别数据集 数据集
人脸表情识别数据集7类(悲伤、害怕、厌恶、快乐、气愤、惊讶、中性).zip 人脸表情识别数据集7类(悲伤、害怕、厌恶、快乐、气愤、惊讶、中性).zip 人脸表情识别数据集7类(悲伤、害怕、厌恶、快乐、气愤、惊讶、中性).zip 数据量比较大,该数据集适合做分类识别,不可用于目标检测。 resnet 、vgg16、cnn、Mobilenet等网络。 放心下载使用 【基于卷积神经网络实现面部表情识别源码及模型下载地址】(准确率达到97%) https://download.csdn.net/download/DeepLearning_/87325594