强化学习算法复现研究:深度探究Reinforcement Learning-Based Fixed-Time轨迹跟踪控制机制及其在机械臂的应用——适应不确定性系统及输入饱和状态的自适应控制框架与简易代码实践指南。,《顶刊复现》(复现程度90%),Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation,自适应强化学习机械臂控制,代码框架方便易懂,适用于所有控制研究爱好者。 ,核心关键词:顶刊复现; 强化学习; 固定时间轨迹跟踪控制; 不确定机械臂; 输入饱和; 自适应控制; 代码框架; 控制研究爱好者。,《基于强化学习的机械臂固定时间轨迹跟踪控制:复现程度高达90%》
2025-09-29 03:11:49 555KB
1
基于深度强化学习算法的电力市场决策建模:DDPG策略在发电商竞价中的应用研究,基于深度强化学习算法的电力市场竞价策略建模程序代码研究——深度探索DDPG在发电商竞价决策中的应用,基于Agent的电力市场深度决策梯度(深度强化学习)算法建模程序代码 基于DDPG(深度确定性梯度策略)算法的电公司竞价策略研究 关键词:DDPG 算法 深度强化学习 电力市场 发电商 竞价 ,DDPG算法;深度强化学习;电力市场;发电商;竞价,基于DDPG算法的电力市场深度决策建模程序代码 在电力市场中,竞价策略对发电商的利润和市场的整体效率具有重要影响。近年来,随着深度强化学习算法的发展,发电商竞价策略的研究进入了一个新的阶段。深度强化学习算法,尤其是深度确定性梯度策略(DDPG),在处理连续动作空间的复杂决策问题时表现出了独特的优势。本研究旨在探讨DDPG策略在电力市场发电商竞价中的应用,通过构建基于DDPG的竞价模型,实现在动态变化的电力市场环境下,发电商的最优竞价策略。 深度强化学习结合了深度学习和强化学习的优点,能够处理高维状态空间和动作空间的决策问题。在电力市场中,发电商需要根据市场的实时供需情况、竞争对手的行为、成本信息等多维信息做出决策,这为深度强化学习提供了良好的应用场景。DDPG算法通过使用深度神经网络来近似策略函数和价值函数,能够处理连续动作空间,并通过与环境的交互来学习最优策略。 在电力市场竞价模型中,发电商需要决定在每个时段提供多少电能以及相应的报价。一个有效的竞价策略能够帮助发电商在满足市场需求的同时最大化其利润。DDPG算法通过构建一个智能体(Agent),使其在与电力市场环境的交互中学习到最优的竞价策略。智能体通过经验回放和目标网络技术来稳定学习过程,并采用actor-critic架构来平衡探索和利用。 研究中,发电商的竞价模型考虑了市场电价的波动、发电商的成本结构、竞争对手行为等因素,通过模拟电力市场环境的动态变化,评估DDPG算法在不同场景下的性能。实验结果表明,基于DDPG算法的竞价策略能够在复杂的市场环境下实现高效的资源分配和利润最大化。 此外,本研究还对DDPG算法在电力市场竞价中的应用进行了深入的分析,探讨了算法参数的调整对策略性能的影响,以及如何提高算法的稳定性和收敛速度。研究成果不仅为发电商提供了一种新的竞价策略设计方法,也对电力市场运营机构和监管机构提供了决策支持,帮助其更好地理解和预测市场参与者的行为。 研究成果的文档包括了对DDPG算法理论基础的介绍、电力市场竞价环境的建模、算法实现的具体步骤、实验设计和结果分析等部分。此外,还提供了相关程序代码的实现细节,为其他研究者或实际操作者提供了可复现的研究成果和实践指导。 电力市场竞价模型和策略的研究对于提升电力市场运行效率、促进清洁能源的消纳、保障电力系统的稳定运行具有重要意义。随着深度强化学习技术的不断进步,未来在电力市场中的应用前景将更加广阔,值得进一步深入探索。
2025-09-24 14:31:12 1.81MB xhtml
1
【优化路由】强化学习求解路由优化问题是一个重要的IT领域课题,主要涉及到计算机网络、算法设计和机器学习等多个方面的知识。在这个项目中,通过使用强化学习的方法,我们可以找到解决复杂路由优化问题的有效策略。以下是对这个主题的详细阐述: 1. 强化学习强化学习是机器学习的一个分支,它通过与环境的交互来学习最优行为策略。在路由优化问题中,智能代理(如路由器)会根据当前状态选择最佳行动,并从环境中获得反馈(奖励或惩罚),以最大化长期累积奖励。 2. 路由优化问题:在计算机网络中,路由优化是指寻找最有效、最可靠的路径,使得数据包可以从源节点传输到目标节点。这通常涉及到最小化延迟、最大化带宽利用率、减少拥塞、提高网络可靠性等目标。 3. 强化学习模型:在解决路由优化问题时,每个网络节点可以视为一个决策点,而每条可能的路由则是一个可选的动作。环境的状态可能包括网络拓扑、流量负载、链路状态等信息。智能代理通过不断尝试不同的路由决策并观察结果,逐渐学习到最佳策略。 4. Matlab应用:Matlab是一种广泛使用的数学计算软件,其强大的数值计算和可视化功能使其成为实现强化学习算法的理想平台。在本项目中,Matlab源码可能包含了用于模拟网络环境、定义状态空间、动作空间、奖励函数以及训练强化学习算法的代码。 5. Q-learning算法:Q-learning是最常用的强化学习算法之一,适用于离散动作空间的问题。在路由优化中,智能代理可以使用Q-table来存储每个状态-动作对的Q值,通过迭代更新Q值来逼近最优策略。 6. 针对性强化学习改进:为了适应特定的路由优化需求,可能会采用深度Q网络(DQN)或双Q-learning等技术,这些技术可以处理连续动作空间,或者解决探索与利用之间的平衡问题。 7. 模型评估与调整:在训练强化学习模型后,需要通过模拟实验或真实网络环境进行测试,评估其性能。根据实际表现,可能需要调整模型参数、学习率、折扣因子等超参数,以进一步优化路由策略。 8. 实时适应性:强化学习的优势在于其动态适应性,能随着网络状况的变化实时调整策略。在实际应用中,这将帮助网络系统保持高效运行,即使在网络条件变化时也能提供优质的路由服务。 9. 展望:将强化学习应用于路由优化不仅有助于提高网络性能,还可以为未来可能出现的自适应、自我修复网络提供理论支持。随着计算能力的提升和算法的不断改进,强化学习在路由优化领域的应用前景广阔。 这个项目结合了强化学习和路由优化两大主题,通过Matlab实现了一个动态学习和优化网络路由的模型。通过深入理解并实践这一方法,我们可以为解决复杂网络问题提供新的思路和工具。
2025-09-23 08:29:13 4.91MB
1
深度强化学习上手实战,必备书籍。 The topic of this book is Reinforcement Learning—which is a subfield of Machine Learning—focusing on the general and challenging problem of learning optimal behavior in complex environment. The learning process is driven only by reward value and observations obtained from the environment. This model is very general and can be applied to many practical situations from playing games to optimizing complex manufacture processes.
2025-09-14 16:06:16 28.16MB 深度学习 强化学习
1
Reinforcement learning is one of the most exciting and rapidly growing fields in machine learning. This is due to the many novel algorithms developed and incredible results published in recent years. In this book, you will learn about the core concepts of RL including Q-learning, policy gradients, Monte Carlo processes, and several deep reinforcement learning algorithms. As you make your way through the book, you'll work on projects with datasets of various modalities including image, text, and 《Python Reinforcement Learning Projects》这本书深入探讨了强化学习这一机器学习领域的热门话题。强化学习以其新颖的算法和近年来发表的显著成果而备受关注。通过本书,读者将掌握强化学习的核心概念,包括Q学习、策略梯度、蒙特卡洛过程以及深度强化学习算法。 在项目实践中,读者将运用TensorFlow这一强大的深度学习库处理各种模态的数据集,包括图像、文本等。这些项目旨在帮助读者将理论知识应用于实际问题,从而更好地理解并掌握强化学习的精髓。 Q学习是一种经典的强化学习算法,它允许智能体通过与环境的交互学习最优策略,以最大化长期奖励。书中会详细介绍如何构建Q表和更新Q值,以及如何利用ε-贪婪策略平衡探索与开发。 策略梯度是另一种重要的强化学习方法,它通过直接优化策略参数来改进策略。书中将解释如何利用梯度信息更新策略网络,以期望获得更高的奖励。 蒙特卡洛过程是强化学习的基础之一,它通过回溯过去的所有经历来估计策略的价值。书中将介绍第一遍和第零遍蒙特卡洛学习,以及它们在实际应用中的优缺点。 深度强化学习强化学习与深度学习的结合,能够处理高维度状态空间。书中的项目可能涵盖DQN(深度Q网络)、A3C(异步优势演员评论家)和DDPG(深度确定性策略梯度)等算法,这些都是深度强化学习领域的里程碑式工作。 此外,书中还将涉及如何处理连续动作空间的问题,例如在DDPG中使用的确定性策略梯度方法,以及如何处理延迟奖励和非平稳环境等问题。 通过这些项目,读者不仅能够学习到强化学习的基本原理,还能掌握如何在实际问题中使用Python和TensorFlow实现这些算法。同时,书中可能还会涵盖如何收集和预处理数据,以及如何评估和调试强化学习模型。 《Python Reinforcement Learning Projects》是一本面向实践的强化学习指南,通过实例和项目,读者可以系统地提升自己在这一领域的技能,并为解决更复杂的人工智能问题打下坚实基础。无论你是机器学习爱好者,还是希望将强化学习技术应用于实际工作的专业人士,这本书都将提供宝贵的学习资源。
2025-09-14 15:35:39 15.67MB 强化学习 python reinforcement 人工智能
1
【SSL-RL】自监督强化学习:事后经验回放 (HER)算法 事后经验回放,Hindsight Experience Replay (HER) 是一种在稀疏奖励强化学习环境下提高智能体学习效率的策略。稀疏奖励问题是指智能体在多数状态下无法获得有价值的反馈,因为奖励信号极其稀少或完全没有。HER通过回顾智能体过去未能实现的目标,将这些“失败”的经验转换为有价值的学习机会,从而极大地提高了智能体在稀疏奖励场景中的学习效率。 HER算法最早由OpenAI团队提出,主要用于解决目标导向的强化学习任务,其中智能体的目标是达到某个特定的状态(例如到达某个地点或完成某个任务),但由于奖励稀疏,智能体很难获得足够的反馈进行有效学习。(这已经是被广泛利用的机制了)
2025-09-11 18:45:13 3KB 机器学习 人工智能 项目资源
1
首先介绍了认知无线电技术产生的背景,以及强化学习的发展和应用于认知领域的优势;接着对强化学习的基本原理及其2个常见的模型Q-Learning和POMDP作了介绍,并对其模型定义、思想、所要描述的问题和使用的场景都做了较详细的阐述;然后针对这个方向最近几年的顶级会议和期刊论文,分析了其主要内容;通过最近几年的学术、会议论文中所述的研究现状及成果,说明强化学习的主要特点是能够准确、快速学习到最优策略,能够模拟真实环境,自适应性强,提高频谱感知、分配效率,从而最大化系统吞吐量,这些优势充分证明了强化学习将是认知
2025-09-09 18:51:17 632KB 工程技术 论文
1
内容概要:本文探讨了从2自由度到6自由度机械臂的轨迹跟踪控制方法,重点介绍了利用深度确定性策略梯度(DDPG)强化学习算法进行控制的研究。文中详细解释了2自由度机械臂的基础运动学公式及其经典控制算法的应用,同时深入讨论了6自由度机械臂的复杂运动学建模。此外,还提供了DDPG算法的具体实现步骤,并展示了如何将其应用于机械臂的轨迹跟踪控制中。最后,通过Simulink仿真平台进行了实验验证,确保控制算法的有效性和可行性。 适合人群:从事机器人技术研究的专业人士、高校相关专业师生、对机械臂控制和强化学习感兴趣的科研人员。 使用场景及目标:适用于希望深入了解机械臂轨迹跟踪控制机制的研究者,尤其是那些希望通过强化学习改进现有控制方法的人群。目标是在理论和实践中掌握DDPG算法的应用技巧,提高机械臂在各种应用场景中的精度和效率。 其他说明:文章不仅涵盖了机械臂的基本概念和技术背景,还包括详细的数学推导和代码示例,帮助读者更好地理解和实施所介绍的方法。
2025-09-07 22:57:34 3.92MB
1
内容概要:本文针对无人系统的智能室内视觉语言导航算法进行了深入研究,提出了基于余弦相似和波束搜索两种算法模型,通过改进视觉语言导航(VLN)中的特征匹配和评估策略,显著提高了导航算法在未知环境中的导航准确率和泛化能力。实验表明,这两种改进的 VLN 模型不仅在国际公开数据集 Room-to-Room 上表现优异,还在多项指标上超过现有模型。 适合人群:电子与通信工程领域的研究人员、高校师生、从事机器人导航和多模态融合技术的专业人士。 使用场景及目标:适用于需要研究或开发基于视觉和语言融合的导航算法的企业和机构,目标是提高机器人在复杂室内环境中的导航准确率和鲁棒性。 其他说明:本文提供的研究成果可以推广应用到智能家居、智慧物流、自动驾驶等领域,对于推动人工智能与机器人技术的融合发展具有重要意义。
1
内容概要:本文介绍了一种基于DDPG(深度确定性策略梯度)算法的强化学习自适应PID参数控制方法,并详细展示了其在MATLAB环境中的实现过程。传统的PID参数调节依赖于人工经验,难以应对复杂多变的工业环境。为解决这一问题,作者提出了一种新的方法,即通过DDPG算法自动调整PID控制器的比例、积分和微分参数。文中首先介绍了PID控制器的基本概念以及传统调参方法的局限性,随后详细描述了DDPG算法的工作原理,包括环境搭建、奖励函数设计、演员-评论家双网络架构的构建以及训练过程中的探索策略。最后,通过锅炉温度控制的实际案例验证了该方法的有效性和优越性。 适合人群:自动化控制领域的研究人员和技术人员,尤其是对强化学习和PID控制感兴趣的读者。 使用场景及目标:适用于需要精确控制系统的工业场合,如温度控制、电机控制等。目标是提高控制系统的稳定性和响应速度,减少人为干预,提升生产效率。 其他说明:尽管该方法在某些方面表现出色,但在应对突变干扰时仍存在一定的延迟。未来可以通过改进算法或优化模型进一步提升性能。此外,该框架具有良好的通用性,可以方便地应用于不同的被控对象。
2025-09-02 14:54:41 630KB
1