ACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集训、国赛、美赛算法实现,各种智能算法(遗传算法、模拟退火算法、蚁群算法、粒子算法、神经网络算法等)实现和优化.zipACM集
2024-07-01 14:37:28 11.48MB 神经网络 模拟退火算法
1
为了克服使用单一智能优化算法在求解复杂问题中表现出的精度不高、易陷入局部最值、不能在全局搜索等一系列不足,算法融合的思想开始被研究和应用。将GA与PSO、GWO这三种经典算法进行融合,并辅以改进,从而利用它们的互补性,取长补短,提高求解复杂问题的能力。 无免费午餐定理,对任何优化问题,任两种优化算法的平均性能是相等的,没有任何一种优化算法在计算效率、通用性、全局搜索能力等性能方面都能表现得很好。 算法的混合也就成了算法优化领域的一个研究热点和趋势,混合有着固有的内在需求,不是简单地将算法组合叠加,要按照一定的策略和模式进行。 GA算法过程简单,全局收敛性好,多用于进行函数优化、数据挖掘、生产调度、组合优化、图像处理、机器学习等问题。但个体没有记忆,遗传操作盲目无方向,所需要的收敛时间长; PSO算法原理简单,用速度、位移公式迭代易于实现,具有记忆功能,需要调节的参数少,在寻优稳定性和全局性收敛性方面具有很大优势,但容易陷入局部最优值出现早熟,种群多样性差,搜索范围小,在高维复杂问题寻优时更为明显,多用于求解组合优化、模式分解、传感器网络、生物分子研究等领域。 联合GWO算法
2024-06-26 14:27:38 1.13MB
1
针对基本遗传算法求解AUV路径规划问题时存在收敛速度慢等缺陷,提出一种基于改进型遗传算法(IGA)的路径规划方法,该方法采用改进的遗传算法、具有明确物理意义的适应度函数,提高了算法搜索的速度和优化的程度,解决了AUV多目标优化的路径规划问题。仿真试验结果证明:该方法是正确有效、稳定的,并且比基本遗传算法得到的路径更优,收敛速度得到显著提高。
2024-06-19 16:15:25 835KB 自然科学 论文
1
【多式联运】基于matlab改进的模拟退火优化遗传算法求解多式联运运输问题(含碳政策)【含Matlab源码 1995期】.mp4
2024-06-18 20:59:13 1.96MB
1
matlab洛伦兹代码洛伦兹·德鲁德(Lorentz)DrudeMaterialFit C#中的遗传算法用于将材料折射率数据拟合到Lorentz-Drude色散模型。 可以在GATest / test.cs中更改输入文件(制表的lambda,n,k文本文件)和算法参数。 Matlab代码可以生成数字并与分析模型进行比较,以计算剩余的适应性误差。
2024-06-18 19:58:35 24KB 系统开源
1
【优化生产】双种群遗传算法求解生产线平衡问题【含Matlab源码 3311期】.zip
2024-06-08 16:34:50 1.84MB
1
python 实现遗传算法 课程设计 课程作业 Genetic Algorithm 基本字符串 Basic String 遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等等。 遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解可抽象表示为染色体,使种群向更好的解进化。 在遗传算法里,优化问题的解被称为个体,它表示为一个变量序列,叫做染色体或者基因串。染色体一般被表达为简单的字符串或数字符串,不过也有其他的依赖于特殊问题的表示方法适用,这一过程称为编码。首先,算法随机生成一定数量的个体,有时候操作者也可以干预这个随机产生过程,以提高初始种群的质量。在每一代中,都会评价每一个体,并通过计算适应度函数得到适应度数值。按照适应度排序种群个体,适应度高的在前面。这里的“高”是相对于初始的种群的低适应度而言。
2024-06-08 09:12:02 3KB python 课程资源 遗传算法 课程设计
1
【TSP问题】基于遗传算法求解三维旅行商问题含Matlab源码
2024-05-30 11:59:52 519KB matlab 开发语言
1
1.版本:matlab2019a,不会运行可私信 2.领域:【优化布局】 3.内容:基于遗传算法实现红绿灯优化管理附matlab代码 4.适合人群:本科,硕士等教研学习使用
2024-05-29 19:51:20 18KB matlab
遗传算法整定PID参数;MATLAB;simulink;GA;遗传算法
2024-05-28 15:23:56 198KB matlab simulink 遗传算法
1