360T7路由器 360T7U 360T7M原厂分区备份 恢复原版分区引导固件
2025-12-07 13:39:42 49.61MB 网络工具
1
资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 “网件R7000 梅林固件384.16_0.zip”是针对Netgear R7000路由器的梅林固件384.16_0版本的更新包。Netgear是知名网络设备制造商,R7000是其高性能无线路由器,适用于家庭和小型办公。梅林固件是基于官方DD-WRT或OpenWrt固件开发的非官方固件,由社区开发者维护,增加了高级功能和定制选项,适合对性能要求高的用户。发布者称已刷此固件,可放心使用,但刷机前用户仍需确保固件来源可靠,避免设备损坏。 该压缩包内含以下文件:R7000_384.16_0.chk是校验文件,用于验证固件完整性和未被篡改;R7000_384.16_0.trx是固件更新文件,用户需在路由器管理界面上传此文件进行升级;Changelog-NG.txt是变更日志,记录了固件从上一版本到当前版本的改动、改进等;README-merlin.txt是说明文档,包含刷入固件的步骤、注意事项、特性等信息;sha256sum.txt是SHA256哈希值列表,用于验证压缩包完整性。 用户在升级Netgear R7000路由器梅林固件384.16_0版本前,应仔细阅读相关文档,确保设备满足刷机条件并遵循正确流程,以规避风险。梅林固件通常有QoS、端口转发、远程访问、IPv6支持等丰富功能,可提升路由器性能和可管理性。
2025-12-06 19:55:23 288B 网件R7000
1
eNSP(Enterprise Network Simulation Platform)是一款由华为公司开发的网络模拟软件,主要用于模拟华为的网络设备,以便用户在实际购买和部署华为网络设备之前,对网络设备的功能进行验证和测试。在eNSP中,用户可以模拟各种网络场景,如路由、交换、无线、安全等,从而掌握华为网络产品的配置和应用。 二层交换机链路聚合是网络技术中的一项重要技术,它可以在多个物理链路之间实现负载分担,从而提高网络的带宽和可靠性。在eNSP中,用户可以通过配置二层交换机链路聚合,来模拟实际网络环境中的链路聚合效果。 在eNSP中配置二层交换机链路聚合,主要涉及到以下几个步骤:需要在交换机上创建VLAN(Virtual Local Area Network,虚拟局域网),并将需要聚合的物理接口划分到同一个VLAN中。然后,创建链路聚合组,并将VLAN中的物理接口添加到链路聚合组中。对链路聚合组进行配置,如设置链路聚合模式、负载分担算法等。 链路聚合模式主要有两种:静态聚合和动态聚合。静态聚合是由用户手动配置的,需要在交换机上明确指定哪些接口属于同一个链路聚合组。动态聚合则是由交换机自动完成的,交换机会根据一定的算法(如基于源地址、目的地址、源和目的地址等)自动选择接口加入链路聚合组。 在eNSP中配置二层交换机链路聚合,不仅可以帮助用户理解链路聚合的原理和配置方法,还可以让用户体验到链路聚合带来的网络性能提升。此外,通过模拟实际网络环境,用户还可以掌握如何在网络中部署链路聚合,以及如何在实际工作中解决可能出现的问题。 华为eNSP的路由交换标签,表明这是一款专注于路由和交换技术的模拟平台。在路由交换领域,华为的产品线涵盖了从低端到高端的全系列路由器和交换机,可以满足不同规模企业的需求。通过eNSP模拟华为的路由交换设备,用户可以深入学习和理解华为的网络技术,为日后的工作打下坚实的基础。 通过eNSP模拟二层交换机链路聚合的配置和应用,用户可以更直观地理解链路聚合技术的优势和应用场景。例如,在企业网络的核心层或者汇聚层,由于数据流量较大,使用链路聚合可以有效提高网络的带宽,保证网络的稳定性和可靠性。同时,链路聚合还能实现链路的冗余备份,当某一条链路出现故障时,数据流量可以迅速切换到其他链路,从而保证网络服务的连续性。 通过使用eNSP模拟华为网络设备实现二层交换机链路聚合,不仅可以帮助用户在实际部署之前对网络设计和配置进行验证,还能帮助用户深入学习和掌握华为的网络技术。这对于网络工程师的技能提升和企业网络的优化具有重要意义。
2025-12-03 09:12:36 39KB eNSP 路由交换
1
Vyos 1.4.3 长期支持
2025-11-28 16:43:18 454MB Vyos 路由器
1
​ 介绍:本次实验通过多种路由交换协议组网来模拟中大型网络公司的网络组网转发,因本次实验中所涉及的设备数量较多,内存不足的朋友可以通过分批次启动部分设备来查看实验效果,如果想要启动全部设备的话,大概需要20G的运行内存。 Topo图: 本次实验的介绍如下: 1、设备数量: 路由器:8台 交换机:13台 防火墙:2台 无线控制器:1台 Server:1台 AP:4台 PC:7台 Phone:4台  3、组网情况介绍 核心层由Core-01_1、Core-01_2 两台交换机组成M-LAG系统 设备型号【S6850】 核心设备通过分布式聚合接入上下行设备,再加上VRRP实现高冗余、高可靠性。  汇聚层由AGG-01、 AGG-02 两台交换机组成 设备型号【S6850】 汇聚层上行通过聚合接入核心层的M-LAG分布式聚合组,下行VRRP互联接入层 由于汇聚层设备开启了网卡增强,如果问题的出现与汇聚层的接口有关,请检查汇聚设备的接口是否为down。 AC直接接入两台汇聚,AP直接从AC获取IP,被AC纳管。如果从核心上获取地址需要通过Option43指定AC的地址了。 AP转发模式为本
2025-11-21 17:12:22 35.99MB 毕业设计
1
路由器连接在多个网络上,所以它应当对应每个网络有一块网卡和一个IP地址。然而在实际中可能会出现需建立一个内部网以解决Internet的 IP地址不够用的情况,而工作站往往在自己的主板上又已集成了一块网卡。如何利用现有的资源设置路由器呢?似乎不好办,然而事实上单网卡工作站也可以配成 TCP/IP网络路由器。本文介绍了在装有Solaris2.x操作系统的SUN工作站上,配置路由器的方法。 标题中的“单网卡工作站也可作TCP/IP网络路由器”指的是在资源有限的情况下,如何利用一台只有一块网卡的工作站作为TCP/IP网络的路由器。这种配置通常用于解决IP地址不足或者构建内部网络的问题。描述中提到,虽然常规路由器通常需要对应每个网络拥有一块网卡和一个IP地址,但在Solaris2.x操作系统下的SUN工作站,可以通过特定的配置实现单网卡路由器的功能。 在配置单网卡工作站为路由器的过程中,主要涉及以下几个步骤: 1. **配置路由器接口**:需要创建多个`hostname.interface`文件,即使在单网卡环境下,这些文件的`interface`名称可以使用相同的网卡代号,通过添加`:n`来区分不同的网络接口。例如,可以创建`hostname.le0`和`hostname.le0:2`来模拟两个网络连接。 2. **分配主机名**:在每个`hostname.interface`文件中,需要为不同的网络接口分配不同的主机名,确保每个网络接口有其独特的IP地址。例如,可以为互联网接口分配`sun1`,为内部网络接口分配`sun2`。 3. **更新IP地址和主机名**:在`/etc/inet/hosts`文件中,添加主机名和对应的IP地址。确保每个网络接口的IP地址都被正确地记录下来。例如,`202.114.209.37`作为互联网接口的IP地址,`180.114.20.1`作为内部网络接口的IP地址。 4. **配置网络掩码**:如果路由器连接了子网,需要在`/etc/inet/netmasks`文件中添加本地网络号和子网掩码,以便正确识别和处理不同子网的流量。 5. **选择路由协议**:可以选择静态路由或动态路由协议。动态路由协议如RIP和RDISC会自动更新路由信息,而静态路由则需要在`/etc/defaultrouter`文件中指定默认路由器。如果选择动态路由,可以保持该文件为空,让路由器自动获取路由信息;如果选择静态路由,需要填写默认路由器的IP地址和主机名。 6. **重启计算机**:完成上述配置后,重启计算机,系统会在启动时自动配置接口,识别到多个`hostname.interface`文件的存在,从而将工作站视为路由器。 通过这种方式,单网卡的工作站能够有效地处理来自不同网络的通信,提供路由服务。虽然硬件上只有一个网卡,但通过软件层面的设置,工作站可以拥有多个IP地址,实现了虚拟接口,达到类似多网卡路由器的效果,解决了资源有限情况下的网络连接需求。
2025-11-16 09:53:35 24KB 网络
1
需要将三部分全部下载才能解压,Cisco路由器配置与管理完全手册(第二版)高清版part3
2025-11-06 18:51:54 47.23MB cisco 王达
1
需要将三个部分全部下载之后才能解压,Cisco路由器配置与管理完全手册(第二版)高清版part2
2025-11-06 18:50:17 50MB cisco 王达
1
需要将三个部分全部下载之后才能解压,Cisco路由器配置与管理完全手册(第二版)高清版 part1
2025-11-06 18:46:58 50MB cisco 王达,
1
《中低端路由器的安全测试方法详解》 路由器作为网络的核心设备,承担着数据传输与网络连接的重要职责。在信息化社会,网络安全日益受到重视,对于中低端路由器的安全性测试尤为重要。YD-T 1440-2006《路由器设备安全测试方法》是针对这一领域的国家标准,旨在为制造商和测试机构提供一套科学、全面的安全评估标准,以确保用户的数据安全和网络稳定性。 一、安全测试框架 YD-T 1440-2006标准构建了一个涵盖硬件、软件、通信协议以及安全管理等多个层面的安全测试框架。该框架强调从设计、实现到运行维护的全过程控制,包括安全性设计、安全功能测试、安全性能测试和安全运行管理等方面。 二、硬件安全测试 1. 物理防护:测试路由器的物理防破坏能力,如外壳强度、锁具可靠性等。 2. 电源安全:验证电源模块的稳定性和抗干扰能力,防止电源故障导致的安全风险。 3. 接口安全:检查接口的电磁兼容性,防止信息泄露或被非法接入。 三、软件安全测试 1. 源代码审查:分析路由器的软件源代码,查找潜在的安全漏洞和恶意代码。 2. 安全功能:测试路由器的防火墙、访问控制、加密算法等安全功能的正确性和有效性。 3. 系统升级:验证固件升级过程的安全性,防止恶意更新破坏系统。 四、通信协议安全 1. 协议合规性:确保路由器遵循标准的通信协议,避免因协议不规范引发的安全问题。 2. 数据加密:测试数据在传输过程中的加密强度和完整性,防止数据被窃取或篡改。 3. 防拒绝服务攻击:评估路由器对DoS(Denial of Service)攻击的防御能力。 五、安全管理 1. 用户权限管理:测试用户账户的创建、修改、删除流程,防止未经授权的访问。 2. 日志记录:验证路由器的日志记录功能,便于追溯和审计安全事件。 3. 故障恢复:检验路由器在异常情况下的恢复能力和备份机制的有效性。 六、实际应用与案例分析 通过实际的测试案例,我们可以深入理解YD-T 1440-2006标准如何应用于中低端路由器的安全评估。例如,对一款路由器进行安全测试,可能涉及模拟攻击,验证其在遭受攻击时的防御能力;或者分析软件更新过程,确保其不会引入新的安全风险。 总结,YD-T 1440-2006标准为中低端路由器的安全测试提供了详尽的指导,帮助业界提升产品的安全性,保障用户在网络世界中的安全。通过实施这套标准,不仅可以提高路由器设备的市场竞争力,也能进一步推动我国网络安全的整体水平。
1