[A , c] = MinVolEllipse(P, 容差)
查找存储在矩阵 P 中的一组数据点的最小体积封闭椭球 (MVEE)。解决了以下优化问题:
最小化日志(det(A)) st (P_i - c)'*A*(P_i - c)<= 1 在变量 A 和 c 中,其中 P_i 是矩阵 P 的第 i 列。 求解器基于 Khachiyan 算法,最终解决方案与最佳值相差预先指定的“容差”量。 --------------------------- 输出:
c : 包含椭球中心的 D 维向量。
答:这个矩阵包含有关椭球形状的所有信息。 要获得椭圆体的半径和方向,请采用输出矩阵 A 的奇异值分解(matlab 中的 svd 函数): [UQV] = svd(A);
半径由下式给出:
r1 = 1/sqrt(Q(1,1)); r2 = 1/sqrt(Q(2,2)); ... rD =
2023-04-07 15:25:08
1KB
matlab
1