一个设计模式自动识别技术研究框架
2023-04-12 12:20:25 295KB 研究论文
1
传统盲源分离算法消除眼电伪迹须用到两个眼电信号作为参考,但在采集眼电信号时易给被试带来不适产生噪声,且识别时需要人为辨别,为了解决这些问题,提出一种基于FastICA的眼电伪迹自动去除方法。该方法先计算出FastICA提取出的各独立成分与GFP(Global Field Power)值的相关系数,再比较相关系数,将其绝对值最大所对应的独立成分识别为眼电伪迹独立成分,最后把该独立成分置零重构干净的脑电信号,实现眼电伪迹的自动去除。通过自采的30例脑电数据实验结果表明:该方法能完全自动地去除眼电伪迹成分并有效保留其他脑电成分,且快速准确,适用于实时场合。
2023-03-06 09:18:05 669KB 论文研究
1
自用的软件 难得更新了 开源下载 有兴趣的可以下载研究研究
2023-03-06 04:18:30 14.65MB 2019开源大赛(第四届)
1
可自动识别图片黑边并去除,也可手动设置裁剪范围批量去除。
2023-03-05 14:43:33 54.03MB 图像处理
1
电力漏电用户自动识别Python源码.rar 数据挖掘算法是根据数据创建数据挖掘模型的一组试探法和计算。 为了创建模型,算法将首先分析您提供的数据,并查找特定类型的模式和趋势。概念描述算法使用此分析的结果来定义用于创建挖掘模型的最佳参数。然后,这些参数应用于整个数据集,以便提取可行模式和详细统计信息。
2023-02-10 16:08:22 49KB 源码软件 python 开发语言
1
传统的防窃漏电方法主要通过定期巡检、定期校验电表、用户举报窃电等手段来发现窃电或计量装置故障。但这种方法对人的依赖性太强,抓窃查漏的目标不明确。目前很多供电局主要通过营销稽查人员、用电检查人员和计量工作人员利用计量异常报警功能和电能量数据查询功能开展用户用电情况的在线监控工作,通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息,建立数据分析模型,来实时监测窃漏电情况和发现计量装置的故障。根据报警事件发生前后客户计量点有关的电流、电压、负荷数据情况等,构建基于指标加权的用电异常分析模型,实现检查客户是否存在窃电、违章用电及计量装置故障等。
2023-01-15 15:35:18 1.12MB 数据挖掘 大数据 Rapidminer
1
本文提出了一种肠道疼痛是一种确定的污染,为此,需要简短总结其控制性最终目标。 使用改进的工具来查看混乱情况。 如果关闭基地坚持完成,然后由疼痛可变成动态罕见状态。 图片准备检查用于查看吉姆萨(Giemsa)变色边缘血液测试的微薄传播中的疟疾发热寄生虫,恶性疟原虫种的亲密关系。 一些图片管理的估计被用于对弱血迹传播的疟疾发烧进行自动评估,但是寄生虫血症的程度可靠地不像手动检查那样无可争议。 拟议的系统通过使用图片准备图形来清洁人的滑倒,同时看到疟疾发热寄生虫的亲密关系。 这是通过评估两种观察肠道紊乱寄生虫的策略来创建的。 第一个结构依赖于划分; 第二种用途是使用最少分区分类器进行提取。 肠道污染区的结构提高了人们的可感染性,个性,建设性猜想和相反的需求。
2023-01-11 18:25:58 463KB Image Segmentation SVM Classifier
1
AIS的课件,还可以,有图比较详细,适合用来参考
2023-01-08 18:11:02 876KB AIS
1
编译原理课程设计报告\LR1语法分析器自动识别.rar
1
阿尔茨海默氏病(AD)是痴呆症的最常见形式,是一种无法治愈的神经系统疾病,会导致进行性精神恶化。 尽管对AD进行明确诊断很困难,但在实践中,AD诊断主要基于临床病史和神经心理学数据,包括磁资源成像(MRI)。 近年来,有关将机器学习应用于AD识别的研究越来越多。 本文介绍了我们对这一进展的最新贡献。 它描述了一种基于3D脑MRI深度学习的自动AD识别算法。 该算法使用卷积神经网络(CNN)来实现AD识别。 独特之处在于,大脑的三维拓扑在AD识别中被视为一个整体,从而可以进行准确的识别。 本研究中使用的CNN包括三组连续的处理层,两个完全连接的层和一个分类层。 在该结构中,三组中的每一个都由三层组成,包括卷积层,池化层和归一化层。 使用来自阿尔茨海默氏病神经成像计划的MRI数据对算法进行了训练和测试。 使用的数据包括约47位AD患者和34位正常对照的MRI扫描。 实验表明,该算法具有较高的AD识别精度,灵敏度为1,特异性为0.93。
1