matlab神经网络43个案例分析 共分43个章节,每个章节包含独立的算法源码及数据文件,涵盖神经网络常用算法,适合神经网路初学者进行参考、学习、借鉴。
2024-05-23 15:18:33 11.86MB 神经网络 matlab
1
广义回归神经网络(GRNN Generalized Regression Neural Network)是美国学者 Don-ald F. Specht在1991年提出的,它是径向基神经网络的一种。GRNN具有很强的非线性映射能力和柔性网络结构以及高度的容错性和鲁棒性,适用于解决非线性问题。GRNN 在逼近能力和学习速度上较RBF网络有更强的优势,网络最后收敛于样本量积聚较多的优化回归面,并且在样本数据较少时,预测效果也较好。此外,网络还可以处理不稳定的数据。因此,GRNN 在信号过程、结构分析、教育产业,能源、食品科学、控制决策系统、药物设计、金融领域、生物工程等各个领域得到了广泛的应用。
2024-05-21 15:18:49 4KB 神经网络 matlab
1
matlab 基于BP神经网络交通标志识别系统,matlab 基于BP神经网络交通标志识别系统,matlab 基于BP神经网络交通标志识别系统
2024-05-12 21:23:56 12.94MB 神经网络 matlab 交通标志识别
1
基于MATLAB编程,用灰色神经网络的回归分析,代码完整,包含数据,有注释,方便扩展应用 1,如有疑问,不会运行,可以私信, 2,需要创新,或者修改可以扫描二维码联系博主, 3,本科及本科以上可以下载应用或者扩展, 4,内容不完全匹配要求或需求,可以联系博主扩展。
2024-04-29 21:41:37 15KB 神经网络 matlab 灰色神经网络
使用matlab建立bp神经网络回归预测,带完整代码、数据、测试结果、详细说明,读者可自行修改,后续会进行多种回归预测对比以及建立复杂神经网络
2024-04-29 19:46:43 195KB 神经网络 matlab
1
基于BP神经网络的数据分类matlab程序。 matlabR2020编写,可绘制出训练集及测试集结果图及各自混淆矩阵。 BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。 基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
2024-04-18 09:57:21 73KB 神经网络 matlab 故障诊断 分类预测
1
基于神经网络的退化图像复原算法是一种通过训练深度学习模型来恢复退化图像质量的方法。这种算法利用神经网络的强大表示学习能力,能够学习从模糊、噪声等退化图像中提取出干净、清晰的原始图像信息。
2024-04-10 12:00:17 110KB 神经网络 MATLAB 图像复原
1
基于遗传算法优化BP神经网络的数据回归预测MATLAB代码
2024-04-01 15:17:39 26KB 神经网络 matlab
1
蜂群算法优化CNN 卷积神经网络 Matlab
2024-03-21 12:36:26 1.91MB matlab
1
《MATLAB 神经网络43个案例分析》源代码&数据 网络资源,美赛数学建模可自用,免费分享出来。 美国大学生数学建模竞赛(MCM/ICM),简称“美赛”,由美国数学及其应用联合会主办,是最高的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛,一般也指数学建模竞赛。赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。
2024-03-19 14:20:12 11.77MB 神经网络 matlab
1