雷达技术是现代电子战的核心组成部分,其工作原理与系统设计涉及众多复杂概念和算法。MATLAB作为一种强大的数学计算与仿真工具,在雷达研究与教学中应用广泛。本压缩包主要围绕LFM(线性调频)信号的目标回波模拟及脉冲压缩处理展开,这是雷达系统的关键环节。 LFM信号是一种频率随时间线性变化的信号,具备宽频带和高分辨率的特点。在雷达系统中,发射的LFM脉冲能够携带大量信息,其频率变化率直接影响雷达的测距能力和距离分辨率。在MATLAB中,可以使用chirp函数生成LFM信号,该函数的参数包括起始频率、终止频率、持续时间和相位。 雷达工作时,发射的LFM脉冲在空间传播后,遇到目标会反射形成回波。在MATLAB中,可以通过模拟信号传播的路径损耗、多普勒效应等因素来实现目标回波的模拟。其中,filter函数可用于滤波处理,模拟信号在空间传播中的衰减;fft函数则用于快速傅里叶变换,分析信号的频谱特性。 脉冲压缩是雷达信号处理的重要步骤,目的是提高雷达的测距精度。LFM信号在接收端经过匹配滤波器处理后,可以实现脉冲压缩,将宽脉冲转换为窄脉冲,从而提升距离分辨率。在MATLAB中,可以通过filter函数实现匹配滤波,再利用ifft函数将频域信息转换回时域,得到脉冲压缩后的回波信号。 生成LFM信号:使用chirp函数生成具有特定参数的LFM脉冲。 目标回波模拟:通过滤波和信号衰减模型模拟信号传播过程。 脉冲压缩:设计匹配滤波器,对回波信号进行滤波处理,然后进行逆傅里叶变换。 分析结果:借助图像或频谱分析工具(如plot或spectrogram)观察脉冲压缩效果和目标特性。 在实际应用中,LFM信号和脉冲压缩技术常与其他雷达技术(如多普勒处理、自适应波形设计等)结合,实现更复杂的功能。通过MATLAB仿真,可以深入理解这些原理,为实际雷达系统设计提供理论支持。本压缩包提供的MATLAB代码
2025-11-21 15:01:54 56KB 雷达信号处理 MATLAB仿真
1
基于Flutter和YOLO11的跨平台目标检测应用,支持Android_iOS_Web_Windows平台。A cross platform object detection application based on Flutter and YOLO11, supporting Android_iOS_Web_Windows platforms..zip 随着移动设备和互联网的普及,跨平台应用开发变得越来越重要。Flutter作为一种新兴的跨平台开发框架,以其高性能、快速开发等优点受到开发者的青睐。YOLO(You Only Look Once)是一种流行的目标检测算法,能够实时地在图像中识别和定位多个对象。将Flutter与YOLO结合,开发出一个支持Android、iOS、Web和Windows平台的跨平台目标检测应用,为用户提供了一种全新的交互体验。 该应用的主要功能是在移动和桌面平台上实时识别和分析图像或视频中的对象。通过Flutter框架,开发者可以使用一套代码库为所有目标平台编写应用程序,大大简化了开发流程。YOLO算法的集成,使得应用能够在设备上本地运行目标检测,无需依赖远程服务器,从而保证了快速响应和数据隐私。 在技术实现上,Flutter利用其高效的渲染引擎,为不同操作系统提供一致的用户界面。而YOLO11作为算法的一个版本,通常意味着它在性能与速度上进行了优化,以适应更多样的应用场景。开发者需要对YOLO进行适当的封装,使其能够与Flutter框架无缝对接,保证算法在不同平台的兼容性和效率。 该跨平台目标检测应用的应用场景十分广泛,从智能安防到工业监控,再到零售业中的商品识别,都能发挥重要作用。例如,在零售业中,应用可以被用于库存管理,通过识别货架上的商品来自动更新库存信息,极大提高了工作效率。在安防领域,应用可以通过实时监控视频流来检测异常行为或入侵者,增强安全防护。 为了确保该应用在不同平台上的稳定性和性能,开发者需要进行大量测试,包括对不同分辨率的屏幕、不同性能的设备进行适配。同时,还需要优化YOLO模型的大小和速度,以适应移动设备的计算资源限制。在Web和Windows平台上,应用可能需要借助额外的插件或工具来实现本地运行和硬件加速,确保与移动端相似的用户体验。 此外,应用的用户界面和交互设计也是决定用户体验的关键因素。Flutter提供了丰富的UI组件库,使得开发者可以构建出美观且响应迅速的用户界面。设计时要考虑到目标检测的实时反馈,如何以直观的方式呈现检测结果,让用户能够轻松理解和操作。 该应用的成功部署需要考虑到实际业务需求和用户反馈,对应用进行持续的维护和迭代更新。开发者应收集用户在使用过程中遇到的问题,并根据反馈进行功能改进和性能优化。通过不断迭代,应用能够不断满足用户的新需求,拓展更多的应用场景。
2025-11-21 10:40:49 323KB
1
在海上船舶智能检测的精准监测与安全管控升级进程中,对船舶类型及航行状态的高效识别与动态追踪是提升航运监管效率、强化海上安全防护的核心要素。基于海事卫星与舰载雷达采集的实时数据解析并标注构建的多维度船舶识别数据集,能为 YOLO 等前沿目标检测模型提供贴合实际航海场景的训练样本,助力模型更精准识别复杂海况中不同类别的船舶 —— 尤其小型渔船(体积小巧易与漂浮物混淆)、大型货轮(载货状态导致轮廓变化)、特种作业船(设备搭载造成形态特异)、非船舶干扰(海上平台易引发误判),其识别需兼顾复杂环境(如风浪干扰、雷达杂波)与多样场景(如近岸繁忙水域、远海开阔航线)的识别精度,为船舶的航线规划、碰撞预警提供数据支撑,推动海事管理从人工监控向智能研判转变,实现监管效能与航行安全的提升。
2025-11-20 23:49:38 219.89MB 数据集
1
根据提供的文件信息,我们可以提取以下知识点: 1. 数据集名称:本数据集被命名为“光栅检测数据集”,并且是以VOC和YOLO格式提供的。 2. 数据集格式:该数据集提供了两种格式的标注方式,即Pascal VOC格式和YOLO格式。这意味着该数据集可以被用于不同的目标检测框架。 3. 文件内容与结构: - 数据集包含153张jpg格式的图片。 - 每张图片对应一个VOC格式的xml文件,用于Pascal VOC格式的标注。 - 同时每张图片也对应一个YOLO格式的txt文件,用于YOLO格式的标注。 - 文件集中不包含分割路径的txt文件,这意味着数据集不包含图像分割任务所需的数据。 4. 标注信息: - 数据集中标注的类别总数为1。 - 标注的类别名称为“guangshan”。 - “guangshan”类别的标注框数为276,表示在这个数据集中,标注工具共绘制了276个矩形框来标定“guangshan”类别的目标。 - 总框数为276,表明整个数据集中的目标数量即为276。 5. 标注工具和规则:数据集使用了labelImg这一常用的图像标注工具。标注规则是采用矩形框对目标进行标注。 6. 数据集的使用声明: - 数据集提供者声明,他们对使用该数据集训练的模型或权重文件的精度不作任何保证。 - 数据集只提供准确且合理标注的图片和标注信息,即数据集的质量保证仅限于数据的准确性和合理性。 7. 特别说明:文档中提到暂无任何特别说明,意味着文件中没有额外提供关于数据集使用条件、版权信息或其他附加信息。 8. 标注示例:文档提到了将会提供标注示例,这可能用于展示如何正确使用标注工具labelImg进行标注,以及标注文件的具体结构和格式。 总结以上知识点,本数据集为一个针对单一类别“guangshan”的光栅检测任务所设计的数据集,具有153张图片和相应的标注文件,按照Pascal VOC格式和YOLO格式进行标注,提供图像标注的矩形框示例,以及使用labelImg工具进行标注的规则。但需注意,数据集的提供者对最终模型训练结果的精度不予保证。
2025-11-18 11:14:08 762KB 数据集
1
在计算机视觉领域,目标检测是一项关键技术,用于识别和定位图像中的特定对象。YOLO(You Only Look Once)是一种高效且流行的实时目标检测系统,它以其快速和准确的性能受到广泛关注。本文将深入探讨“光栅目标检测数据”以及与YOLO数据集格式相关的知识。 标题“光栅目标检测数据Yolov数据集格式”指的是使用YOLO算法训练的目标检测模型所依赖的数据集。YOLO数据集通常包含两部分:图像文件和对应的标注文件。图像文件是普通的图片,而标注文件则包含了关于图像中每个目标对象的位置和类别的信息。 描述中的“已经划分好的train和val”表明数据集被划分为训练集(train)和验证集(val)。这种划分对于机器学习至关重要,因为训练集用于训练模型,而验证集用于在训练过程中评估模型的性能,防止过拟合。 在YOLO数据集中,标注文件通常是以.txt形式存在,每行对应图像中一个单独的对象。每一行包含了四个关键信息:对象的边界框坐标和对象所属的类别。边界框通常用四个坐标表示,即左上角的x和y坐标,以及右下角的x和y坐标。这些坐标通常是相对于图像宽度和高度的比例值,范围在0到1之间。 例如,如果一个标注文件有如下内容: ``` 0.1 0.2 0.3 0.4 5 ``` 这表示图像中存在一个物体,其边界框左上角位于图像的10%位置,右下角在30%位置,物体属于第6类(类别编号从0开始计数)。 YOLO的网络结构分为多个锚框(anchor boxes),预设了不同比例和大小的边界框,以适应不同尺寸和形状的目标。每个网格单元负责预测几个锚框,并对每个锚框预测物体的存在概率和类别的条件概率。 在处理“guangshan”这个特定的压缩包时,我们可以假设它包含了一系列与光栅相关的图像及其对应的标注文件。光栅可能指的是光学设备或图像处理中的术语,但具体含义需根据数据集的上下文来理解。 为了训练一个YOLO模型,我们需要按照YOLO的格式组织这些数据,包括调整图像大小、将边界框转换为YOLO所需的格式,并确保训练和验证集的划分合理。训练过程中,模型会逐步学习识别和定位光栅图像中的目标。 优化模型性能通常涉及调整超参数,如学习率、批大小和训练轮数,以及可能的模型架构修改。训练完成后,我们可以使用测试集进一步评估模型的泛化能力,确保它在未见过的数据上也能表现良好。 “光栅目标检测数据Yolov数据集格式”是一个关于使用YOLO算法对光栅相关图像进行目标检测的训练和验证数据集。通过理解和准备这样的数据集,我们可以训练出能够精确识别和定位光栅图像中目标的高效模型。
2025-11-18 11:12:18 231.34MB 目标检测
1
内容概要:本文档详细介绍了RF-DETR模型在自建数据集上的训练流程及遇到的问题解决方法。首先,训练环境配置要求Python版本不低于3.9,PyTorch版本需2.0以上,具体配置基于Ubuntu系统。接着,对于数据集有特定格式要求,即必须符合COCO数据集格式,若原始数据集为YOLO格式,提供了一段Python代码用于将YOLO格式转换成COCO格式,包括创建对应文件夹结构、调整图像尺寸、转换标注信息等操作。最后,给出了训练RF-DETR模型的具体代码示例,指定了预训练权重路径、数据集目录、训练轮次、批次大小等关键参数。 适合人群:具有一定深度学习基础,尤其是熟悉目标检测领域,并希望了解或使用RF-DETR模型进行研究或项目开发的研究人员和技术人员。 使用场景及目标:①帮助开发者快速搭建适合RF-DETR模型训练的环境;②指导用户按照正确格式准备数据集,特别是从YOLO格式到COCO格式的转换;③提供完整的训练代码,便于用户直接运行并调整参数以适应不同应用场景。
2025-11-17 23:21:26 3KB Python PyTorch 目标检测 detr
1
在IT领域,目标检测是一项关键的技术,特别是在计算机视觉和机器学习中。本数据集专注于船只检测,使用了流行的YOLO(You Only Look Once)算法,这是一种实时的目标检测系统,以其高效性和准确性而闻名。 我们需要理解YOLO算法。YOLO是一种基于深度学习的一阶段目标检测方法,它将目标检测问题转化为一个回归问题,直接预测边界框和类别概率。与两阶段方法(如R-CNN系列)相比,YOLO避免了繁重的候选区域生成步骤,从而实现了更快的检测速度。 该数据集包含5085张图片,每张图片都已使用YOLO格式进行标注。YOLO的标注文件是文本文件,通常与图像文件同名,但扩展名为.txt。这些文件包含了图像中每个目标的坐标(边界框)以及对应的类别ID。在本例中,类别ID为0,表示所有标注的对象都是船只。YOLO的边界框用四个数值表示:(x, y, width, height),其中(x, y)是边界框左上角的坐标,width和height是边界框的宽度和高度,均相对于图像的宽度和高度。 对于训练YOLO模型,这些标注数据至关重要。模型会学习从输入图像中识别出这些特征,并预测出类似的边界框。数据集的大小——5085张图片——对于训练一个准确的模型来说是相当充足的,因为深度学习模型通常需要大量数据来学习复杂的模式。 在训练过程中,通常会将数据集分为训练集、验证集和测试集,以便监控模型的性能并防止过拟合。训练集用于教会模型识别目标,验证集用于调整超参数和模型结构,而测试集则在模型最终确定后用于评估其泛化能力。 "labels"目录可能包含了所有5085个YOLO格式的标注文件,而"images"目录则存储了相应的图像文件。为了训练YOLO模型,开发人员需要将这两个目录与YOLO的训练脚本结合,设置正确的参数,如学习率、批大小、训练迭代次数等。 此外,预处理步骤也很重要,包括图像的缩放、归一化以及可能的数据增强技术,如翻转、旋转和裁剪,以增加模型的鲁棒性。训练完成后,模型可以应用于实时视频流或新的图像,自动检测并标记出船只。 这个"船只数据集yolo目标检测"提供了训练YOLO模型进行船只检测所需的一切资源。通过理解和应用这些知识,开发者可以创建一个能够有效地在各种场景中识别船只的AI系统,这对于海洋监测、安全监控和自动驾驶船舶等领域都有潜在的应用价值。
2025-11-16 14:34:11 830.25MB 数据集 目标检测
1
本文详细介绍了如何将YOLO11训练好的.pt权重文件转换为ONNX模型,并使用ONNX模型进行目标检测推理的全过程。文章首先讲解了导出ONNX模型的两种方法(简洁版和专业版),包括参数设置和注意事项。接着详细阐述了ONNX模型推理的完整流程,包括预处理、推理、后处理和可视化四个关键步骤。其中预处理部分涉及图像读取、尺寸调整和归一化;推理部分使用ONNXRuntime加载模型;后处理部分包括置信度过滤、边界框调整和非极大值抑制;可视化部分则展示了如何绘制检测结果。最后提供了完整的Python实现代码,涵盖了类别映射定义、参数解析和结果保存等功能,为开发者提供了从模型导出到实际应用的一站式解决方案。 在深度学习领域中,YOLO(You Only Look Once)模型因其出色的实时目标检测性能而备受瞩目。随着ONNX(Open Neural Network Exchange)的推出,跨平台和跨框架的模型部署变得更为便捷。本篇文章深入探讨了YOLO11模型从.pt权重文件到ONNX格式的转换,以及如何利用转换后的ONNX模型进行高效的推理过程。 文章介绍了两种导出YOLO11模型为ONNX格式的方法。简洁版方法适用于快速转换,但可能缺乏一些专业定制化的调整;专业版方法则提供了更多的灵活性和参数调整选项,以满足特定的需求。在转换过程中,需要注意模型的输入输出节点设置,以及如何正确处理YOLO模型特有的结构特征。此外,文章强调了转换过程中的注意事项,比如核对模型权重和结构的一致性,确保模型转换前后的性能不变。 接下来,文章详细描述了使用ONNX模型进行目标检测的完整流程。这包括了四个关键步骤:预处理、推理、后处理和可视化。在预处理环节,要处理的主要是输入图像,包括读取图像文件、调整图像尺寸到模型所需的大小,并进行归一化处理,以确保输入数据符合模型训练时的格式。推理步骤则涉及加载转换后的ONNX模型,并使用ONNX Runtime执行推理操作,得出目标的预测结果。后处理步骤对推理结果进行分析,其中包含了置信度过滤、边界框的精确调整,以及应用非极大值抑制算法去除重叠的检测框,得到最终的目标检测结果。在可视化环节,如何将检测结果绘制到原始图像上,是向用户直观展示模型检测能力的重要步骤。 文章最后提供了完整的Python代码实现,这些代码涵盖了从类别映射定义到参数解析,再到结果保存的整个过程。代码中包含了必要的函数和类,方便开发者快速理解和集成,从而能够实现从模型的导出到最终应用的无缝衔接。 在目标检测的多个环节中,YOLO模型之所以脱颖而出,得益于其简洁的设计理念和高效的检测速度。将YOLO11模型部署为ONNX格式,意味着开发者可以在不同的硬件和软件平台上运行模型,不受特定深度学习框架的限制。这样的操作不仅降低了模型部署的复杂性,还扩展了模型的应用场景,特别是在对推理速度有较高要求的实时系统中。 YOLO11的性能在众多模型中依然保持竞争力,而ONNX的介入则进一步加速了该模型的普及和应用。开发者可以利用现成的工具和代码,快速实现一个高性能的目标检测系统。这些系统的应用领域非常广泛,从安防监控到自动驾驶,从工业检测到公共安全等。可以说,本文为开发者提供了一套完整的从理论到实践,再到实际部署的解决方案,极大地促进了目标检测技术的推广和应用。
2025-11-14 11:36:11 2.45MB 目标检测 模型推理
1
Python开发基于深度学习RNN(循环神经网络)空中目标意图识别系统(含完整源码+数据集+程序说明及注释).zip 【项目介绍】 程序为使用RNN循环神经网络进行意图识别的程序 程序设计语言为Python 3.7.6;开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip 代码可以生成损失函数曲线,精确度曲线; 可自定义修改梯度下降方法,损失函数。 【特别强调】 1、项目资源可能会实时更新,解决一些未知bug; 2、非自己账号在csdn官方下载,而通过第三方代下载,不对资源作任何保证,且不提供任何形式的技术支持和答疑!!! 百分百可运行,可远程部署+指导!
2025-11-13 23:24:07 4.27MB python 深度学习 数据集
1
剪刀石头布检测数据集是一个面向目标检测任务的标注数据集,它包含1973张图片,这些图片被划分为三个类别,即剪刀、石头和布。数据集采用Pascal VOC格式和YOLO格式,提供了对应的标注文件,包括.xml文件和.txt文件,这些文件与.jpg图片一一对应。 数据集中的图片数量与标注文件数量都是1973个,说明每张图片都有相应的标注信息。在标注过程中,使用了名为labelImg的工具,它是广泛应用于目标检测任务的图像标注软件。在标注规则方面,该数据集采用矩形框来标注图片中的对象,这种做法在目标检测中是常见的,因为矩形框可以清晰地定义出目标对象在图片中的位置和尺寸。 标注类别总数为3,分别对应着三种手势:剪刀(bu)、石头(jiandao)、布(shitou)。每一个类别中的目标对象数量也有所提及,其中“剪刀”类别的目标框数为609个,“石头”为679个,“布”为685个。标注的总框数为1973,这表明数据集中的每张图片都至少包含一个矩形框,框中是对应该图片中手势的位置。 此外,数据集的标注类别名称分别用中文进行了命名,即“剪刀”、“石头”和“布”,这可能是为了便于理解标注者的意图,也可能是为了适应某些需要中文标签的特定应用场景。在数据集的使用方面,虽然提供了图片及其标注,但是制作者明确声明,他们不对由此数据集训练得到的模型或权重文件的精度作任何保证。这提示使用者,在应用数据集进行模型训练之前需要仔细检查标注的准确性,并可能需要进一步的数据清洗和增强步骤。 这份数据集非常适合用于机器学习和计算机视觉中目标检测模型的训练和验证,尤其是那些涉及手势识别、图像分类和实时对象检测的应用。由于其涵盖的手势种类有限,因此它也是一个入门级别的数据集,便于研究人员和开发者测试和调试他们的算法。 数据集的提供者没有提及任何特定的版权信息或使用限制,这可能意味着该数据集可以被广泛使用于学术研究和商业开发。不过,对于任何商业用途,建议还是先确认数据集的具体使用条款,以避免潜在的法律问题。此外,考虑到数据集的标注质量直接关系到最终模型的性能,使用者应当对标注进行仔细的审查和必要的修正,确保数据集的高质量能够帮助模型训练达到预期的效果。
2025-11-13 17:52:33 2.38MB 数据集
1