1、资源内容:毕业设计lun-wen word版10000字+;开题报告,任务书 2、学习目标:快速完成相关题目设计; 3、应用场景:课程设计、diy、毕业、参赛; 4、特点:直接可以编辑使用; 5、使用人群:设计参赛人员,学生,教师等。 6、使用说明:下载解压可直接使用。 7、能学到什么:通过学习本课题的设计与实现, 学习内部架构和原理,为后续的创作提供一定的设计思路和设计启发 , 同时也为后续的作品创作提供有力的理论依据、实验依据和设计依据, 例如提供一些开源代码、设计原理和电路图等有效的资料,而且本设计简单, 通俗易通,易于学习,为不同使用者提供学习资源,方便快捷, 是一种有效且实用的,同时也是一份值得学习和参考的资料。
2022-04-06 02:40:48 64.31MB 小程序
文件为LSTM文本生成的数据,即尼采的作品,可以通过官网:https://s3.amazonaws.com/text-datasets/nietzsche.txt下载,但速度有点慢!
2022-03-26 11:35:20 587KB 深度学习 生成式学习
1
人脸图像补全作为图像补全技术的一种特殊应用,在被遮挡人脸的识别、人脸修复等问题上有不可替代的作用。现有的人脸补全算法只针对补全图像的真实性,而未考虑其补全后的身份一致性。针对这一问题,设计了一种基于改进的生成式对抗网络的人脸补全算法,通过引入SN-GAN算法,提高了模型训练的稳定性,同时利用人脸识别模型对生成图像加入了身份一致性约束,经过实验证明,所提方法能够在生成高真实性图像时有效保持补全图像的身份一致。
1
T5飞马 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见: ://kexue.fm/archives/8209 分词器 我们将T5 PEGASUS的令牌生成器转换成BERT的令牌生成器,它对中文更友好。同时,我们重新排列一版词表,从而里边的字,词都更加完善,目前的vocab.txt共包含5万个token,真正覆盖了中文的常用字,词。 预训练任务 具体来说,假设一个文档有n个句子,我们从中挑出大约n / 4个句子(可以不连续),因此这n / 4个句子拼起来的文本,跟剩下的3n / 4个句子拼写的文本,更长公共子序列重置长,然后我们将3n / 4个句子拼写的文本视为标题,n / 4个句子拼起来的文本透视摘要,通过这样的方式构成一个“(Reuters,摘要)”的伪摘要数据对。 模型下载 目前开源的T5 PEGASUS是基本版,总参数量为2
2021-12-29 19:58:22 418KB Python
1
生成式对抗网络(GAN)系列,介绍主流生成式对抗网络算法及原理,包括:GANs、DCGAN、WGAN、LS-GAN等,以及一些有意思的应用。
2021-12-13 14:39:15 3.16MB GANs
1
从单文档中生成简短精炼的摘要文本可有效缓解信息爆炸给人们带来的阅读压力。近年来,序列到序列(sequence-to-sequence,Seq2Seq)模型在各文本生成任务中广泛应用,其中结合注意力机制的Seq2Seq模型已成为生成式文本摘要的基本框架。为生成能体现摘要的特定写作风格特征的摘要,在基于注意力和覆盖率机制的Seq2Seq模型基础上,在解码阶段利用变分自编码器(variational auto-encoder,VAE)刻画摘要风格特征并用于指导摘要文本生成;最后,利用指针生成网络来缓解模型中可能出现的未登录词问题。基于新浪微博LCSTS数据集的实验结果表明,该方法能有效刻画摘要风格特征、缓解未登录词及重复生成问题,使得生成的摘要准确性高于基准模型。
2021-12-12 10:35:17 1.16MB 文本摘要 变分自编码器 Seq2Seq模型
1
一种基于生成式对抗网络的图像风格迁移方法,利用人工智能方式实现图像风格变化迁移,
2021-12-07 11:53:10 905KB pdf
1
生成式对抗网络Generative Adversarial Networks,共有257页ppt,包括GAN, DC GAN, ImprovedGAN, WGAN, WGAN-GP, Progr.GAN, SN-GAN, SAGAN, BigGAN(-Deep), StyleGAN-v1,2, VIB-GAN, GANs as Energy Models,非常值得关注!
2021-12-06 16:00:22 30.43MB 《生成式对抗网络》
1
生成式对抗网络(Generative Adversarial Networks,GANs)作为近年来的研究热点之一,受到了广泛关注,每年在机器学习、计算机视觉、自然语言处理、语音识别等上大量相关论文发表。密歇根大学Jie Gui博士等人近期发布了《A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications》,包括28页pdf,这篇综述论文对460余篇论文进行了尝试从算法,理论和应用的角度对各种GANs方法进行叙述。
2021-11-18 20:13:29 1.74MB GANs
1
针对不可抗力因素造成无人机航拍绝缘子图片模糊、绝缘子目标检测率较低的问题,提出了一种基于Wasserstein距离优化的生成式对抗网络(WGAN)图片去模糊的绝缘子目标检测方法。首先在WGAN训练过程中引入残差网络,使得生成的绝缘子图片更加清晰;其次在损失函数中引入Wasserstein距离以保证训练过程的稳定性;最后通过优化模型的训练过程,使得生成的绝缘子图片细节还原度更高。绝缘子图片去模糊化实验结果表明,所提方法在结构相似性与峰值信噪比等评价指标上均高于基于卷积神经网络与深度多尺度卷积神经网络等图像去模糊算法。另外,将利用所提方法生成的绝缘子图片与模糊绝缘子图片划分为3组,采用改进的基于区域建议的卷积神经网络目标检测算法分别进行目标检测实验,精确度均值分别提高了5.77%、6.73 %与5.98 %,有效提高了绝缘子的目标检测率。
1