壁画图像具有结构细节丰富,纹理复杂、色彩多变的特点,而基于卷积神经网络的图像超分辨率算法重建的壁画图像存在纹理模糊和边缘锯齿效应的问题。因此,提出了一种基于多尺度残差注意力网络的壁画图像超分辨率重建算法。首先,通过多尺度映射单元,用不同尺度的卷积核直接对低分辨率壁画图像进行特征提取;然后,将融合后的特征图输入残差通道注意力块,使网络从全局信息出发对各个特征图进行权值优化,增强网络模型的深度映射能力;最后,在网络末端引入亚像素卷积层,重新排列像素,得到重建的高分辨率壁画图像。实验结果表明,本算法可以减小重建误差,增强重建壁画图像的边缘及结构信息,使重建的壁画图像纹理细节更丰富。
2022-04-29 12:27:16 10.43MB 超分辨率 壁画图像 残差网络 注意力机
1
本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传 本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传
2022-04-10 18:57:57 1.62MB 单帧 重建
1
本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传 本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传
2022-04-08 16:07:37 1.63MB 单帧 重建
1
本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传 本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传
2022-04-08 15:39:05 1.62MB 单帧 重建
1
基于稀疏表示的超分辨率图像重建是当前典型的算法之一,引入约束性更强的局部约束线性编码(LLC:Locality-constrained Linear Coding)对其进行了改进。首先依据一个高分辨率图像集训练出成对的高分辨率和低分辨率词典,然后根据低分辨率词典对输入的低分辨率图像用LLC方法进行编码,再依据高分辨率词典及编码系数初步重建高分辨率图像,最后添加全局约束重建高分辨率图像,并将该算法推广到多帧图像超分辨率重建层面。分析和对多幅图像的实验结果都表明,新算法相对原算法不仅提高了图像重建的质量还降低
2022-04-05 16:10:21 980KB 工程技术 论文
1
基于多特征的红外图像超分辨率重建,杨晓敏,韦帅方,在超分辨率研究过程中,人们发现图像块的特征提取是决定超分辨率重建质量的重要环节。图像特征直接表达图像块的结构信息。传统的
2022-03-26 17:22:35 509KB 词袋模型
1
本代码实现了单帧超分辨率重建,效果比传统的样条插值好很多,关于本代码的IEEE文献后期再上传
2021-12-15 16:47:40 1.62MB 单帧,重建
1
深度图像超分辨率重建MATLAB和C语言代码.深度图像超分辨率重建MATLAB和C语言代码.
2021-12-10 15:15:12 63KB ee
1
针对单帧低分辨率图像的超分辨率重建问题,提出一种改进的小波局部适应插值的超分辨率重建方法,该方法能够弥补重建图像边缘不平滑的缺陷。结合小波变换与可分离高低频信息的特性,提出一种综合两者优点的单帧图像超分辨率重建算法。实验结果表明,采用该算法得到的重建图像不仅能较好地保留原始图像的细节信息,提高图像的空间分辨率,并能提高图像的峰值信噪比,更适合人眼视觉系统。
1
为了进一步增强视频图像超分辨率重建的效果,研究利用卷积神经网络的特性进行视频图像的空间分辨率重建,提出了一种基于卷积神经网络的视频图像重建模型。采取预训练的策略用于重建模型参数的初始化,同时在多帧视频图像的空间和时间维度上进行训练,提取描述主要运动信息的特征进行学习,充分利用视频帧间图像的信息互补进行中间帧的重建。针对帧间图像的运动模糊,采用自适应运动补偿加以处理,对通道进行优化输出得到高分辨率的重建图像。实验表明,重建视频图像在平均客观评价指标上均有较大提升(PSNR 0.4 dB/SSIM 0.02),并且有效减少了图像在主观视觉效果上的边缘模糊现象。与其他传统算法相比,在图像评价的客观指标和主观视觉效果上均有明显的提升,为视频图像的超分辨率重建提供了一种基于卷积神经网络的新颖架构,也为进一步探索基于深度学习的视频图像超分辨率重建方法提供了思路。
1