scikit-learn,简称sklearn,一个强大的Python机器学习库,本代码的“加州房价预测”实验是一个线性回归模型,包含已经运行过的jupyter notebook的.ipynb文件和数据集.csv文件,放到jupyter notebook根目录下即可打开或者运行。
1
车流量建模是车联网(vehicular Ad Hoc network,VANET)路由、多媒体接入协议、无线算法设计的基础。准确的车流量模型将对智能交通系统(intelligent transportation system,ITS)实时调度和车联网的信息安全起到十分重要的作用。基于上海市的交通流量数据,利用自回归(auto regressive,AR)模型与神经(back-propagation,BP)网络模型对车流量实测数据进行了仿真对比,给出了相应的预测结果。研究发现,两个模型均能有效地对数据进行跟踪与预测,但对不同时段数据预测的准确性有所不同。研究结果将为未来智能交通应用、车联网的理论研究等提供有力依据。
1
eviews计量经济学实验报告-简单线性回归模型分析.pdf
2022-12-20 14:21:36 170KB 文档资料
1
python实现基于区域二元线性回归模型进行图像恢复源码+项目说明(人工智能期末作业).7z 图像恢复 实验要求: 生成受损图像,函数接口 noise_mask_image 受损图像是由原始图像添加了不同噪声遮罩(noise masks)得到的 噪声遮罩仅包含 {0,1} 值。对原图的噪声遮罩的可以每行分别用 0.8/0.4/0.6 的噪声比率产生的,即噪声遮罩每个通道每行 80%/40%/60% 的像素值为 0,其他为 1。 使用区域二元线性回归模型,进行图像恢复。 评估误差为所有恢复图像与原始图像的 2-范数之和,此误差越小越好。 Result: 使用线性模型以 10 x 10 的区域为单位,进行像素预测,直到完成整张图片的像素预测,完成图像恢复
一维神经网络回归 在这里,我提供了一个示例,其中神经网络用于预测一维回归模型。 这是每个文件的简短描述: MLPregressionLoss.m:使用反向传播算法计算梯度 MLPregressionPredict.m:预测一维回归模型。 nnet.m :这是一个演示,展示了每 100 次迭代的随机梯度方法的进展。
2022-12-06 20:11:41 5KB MATLAB
1
1.持久性模型 2.快速检查自相关_corr() 3.快速检查自相关_lag_plot() 4.数据集线图 5.自回归模型 6.自回归模型 (2) 7.自相关图_autocorrelation_plot() 8.自相关图_plot_acf()
基于ARIMA自回归模型对法国香槟的月销售额预测python实现完整源码+数据+详细注释 包含 1.如何训练Embidding层 2.在Embidding层使用已训练好的词向量_glove 3.数据的初步 可视化分析;4.手动配置ARIMA参数;5.手动配置差分参数;6.网格搜索配置ARIMA参数;7.残差后自相关检测;8.残差修正;9.检查残差预测误差;10.验证模型;11.进行预测;12.数据集分割等
2022-12-02 14:29:50 22KB ARIMA 自回归模型 时间序列预测 LSTM
MATLAB实现LM线性回归模型多输入单输出(完整源码和数据) 数据为多输入单输出回归预测数据,输入多个特征,输出一个响应变量,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
基于Gamma Correcction的回归模型(Python完整源码和数据包) 基于Gamma Correcction的回归模型(Python完整源码和数据包) 基于Gamma Correcction的回归模型(Python完整源码和数据包)
2022-11-23 11:26:33 50KB GammaCorrecctio 回归