MATLAB实现CNN-BiLSTM卷积双向长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2020b及以上。
MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现CNN-BiLSTM卷积双向长短期记忆神经网络多输入回归预测(完整源码和数据) 数据为多输入回归数据,输入12个特征,输出1个变量。 程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上。
MATLAB实现CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测, 数据为单变量时间序列数据,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上,运行主程序CNN_BiLSTMTS即可。
MATLAB实现CNN-BiLSTM卷积双向长短期记忆神经网络时间序列预测, 数据为多变量时间序列数据,多输入单输出,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件,运行环境MATLAB2020b及以上,运行主程序CNN_BiLSTM即可。
MATLAB实现TPA-BiLSTM时间注意力机制双向长短期记忆神经网络时间序列预测(完整源码和数据) 数据为多变量时间序列数据,多输入单输出 运行环境MATLAB2020b及以上,运行主程序TPAMain即可。
回归预测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)多输入单输出(完整源码和数据) 多输入单输出,运行环境MATLAB2018b及以上。
回归预测 | MATLAB实现BiLSTM(双向长短期记忆神经网络)多输入单输出(完整源码和数据) 多输入单输出,运行环境MATLAB2018b及以上。
命名实体识别是自然语言处理的一项关键技术. 基于深度学习的方法已被广泛应用到中文实体识别研究中. 大多数深度学习模型的预处理主要注重词和字符的特征抽取, 却忽略词上下文的语义信息, 使其无法表征一词多义, 因而实体识别性能有待进一步提高. 为解决该问题, 本文提出了一种基于BERT-BiLSTM-CRF模型的研究方法. 首先通过BERT模型预处理生成基于上下文信息的词向量, 其次将训练出来的词向量输入BiLSTM-CRF模型做进一步训练处理. 实验结果表明, 该模型在MSRA语料和人民日报语料库上都达到相当不错的结果, F1值分别为94.65%和95.67%.
1
行业分类-物理装置-一种基于双向长短期记忆网络的定位修正方法.zip