分享课程——人工智能应用开发之QT5+OpenCV4.8从入门到实战(C++)课程
2024-11-15 09:38:57 239B 人工智能 OPENCV
1
在本文中,我们将深入探讨如何在RL78系列单片机,特别是R7F0C004型号,中利用实时时钟(RTC)计时误差校正技术。RL78系列是IAR Systems Group的一款高效能、低功耗的微控制器,常用于嵌入式系统设计。该芯片内置了实时时钟功能,这对于许多需要精确时间同步的系统来说至关重要。 实时时钟(RTC)是微控制器中的一个重要组成部分,它能够保持精确的时间,即使在主CPU关闭或系统待机状态下也能工作。然而,RTC的精度可能会受到温度变化和晶振频率不稳定性的影响,导致计时误差。为了确保系统的时间准确性,我们需要进行周期性的误差校正。 R7F0C004单片机内部集成了一个温度传感器,它可以监测芯片的工作环境温度。温度变化会影响晶振的振荡频率,从而影响RTC的计时精度。32.768kHz晶振是RTC常见的选择,因为它的频率正好可以被2的15次方整除,便于实现秒级别的定时。 误差校正的过程通常包括以下步骤: 1. **读取温度**:通过R7F0C004内置的温度传感器获取当前的工作温度。 2. **查找特性数据**:根据获得的温度值,查阅32.768kHz晶振的频率/温度特性数据表。这张表格列出了不同温度下晶振的预期振荡频率,以及对应的误差。 3. **计算误差**:根据当前温度下的频率值与标准频率的差值,计算出RTC的计时误差。 4. **调整RTC**:将计算出的误差值应用于RTC,调整其计时速度,以减少累积的计时偏差。 5. **周期执行**:为了保持高精度,此校正过程应定期自动执行,比如每小时或每天一次。 文件"r7f0c004_rtc_calibration_application_an.pdf"可能包含了详细的步骤和技术细节,如校正算法、温度传感器的使用方法、特性数据表的解析方式,以及如何在RL78开发环境中实现这个功能的示例代码。 通过这种误差校正技术,我们可以提高R7F0C004单片机在各种环境条件下的RTC性能,确保在温度变化时仍能维持高精度的时间测量,这对于诸如定时任务、数据记录、网络同步等应用来说极其重要。 理解并掌握R7F0C004的RTC误差校正机制是提高系统可靠性、保证时间同步的关键。通过合理利用内置资源,我们可以创建出更为精确和可靠的嵌入式系统。
2024-11-14 10:07:25 555KB 接口应用
1
webporter 是一个基于垂直爬虫框架 webmagic 的 Java 爬虫应用,旨在提供一套完整的数据爬取,持久化存储和可视化展示的实践样例。 webporter 寓意“我们不生产数据,我们只是互联网的搬运工~” 如果觉得不错,请先在这个仓库上点个 star 吧,这也是对我的肯定和鼓励,谢谢了。 目前只提供了知乎用户数据的爬虫示例。不定时进行调整和补充,需要关注更新的请 watch、star、fork
2024-11-14 07:46:55 66KB 爬虫 java
1
应用系统国产化改造-信创适配总结分享,主要包括对国产数据库(达梦库、瀚高数据库)的适配、对国产web应用容器(东方通、宝兰德)的适配案例分享
2024-11-13 13:42:47 6.6MB
1
鸿蒙HarmonyOS应用开发者认证题库+答案案 本资源提供了鸿蒙HarmonyOS应用开发者认证的题库和答案,涵盖了HarmonyOS应用开发的多个方面,包括容器组件、 Ability、Web组件、网络请求、首选项、自定义组件、弹窗组件、图片加载、网络权限等。通过学习和理解这些知识点,可以帮助开发者更好地掌握HarmonyOS应用开发的技术。 1. 容器组件:justifyContent和alignItems的作用 justifyContent用于设置子组件在主轴方向上的对齐格式,alignItems用于设置子组件在交叉轴方向上的对齐格式。 2. Video组件支持本地视频路径和网络路径播放 Video组件可以支持本地视频路径和网络路径播放,播放网络视频时,需要申请权限ohos.permission.INTERNET。 3. Ability是系统调度应用的最小单元 Ability是系统调度应用的最小单元,是能够完成一个独立功能的组件。一个应用可以包含一个或多个Ability。 4. 使用http模块发起网络请求 使用http模块发起网络请求时,不需要使用on("headersReceive')订阅请求头,请求才会成功。 5. Web组件支持缩放 Web组件支持zoom(factor:number)方法进行缩放。 6. router.pushUrl()方法的作用 每调用一次router.pushUrl()方法,默认情况下,页面栈数量会加1,页面栈支持的最大页面数量为32。 7. Tabs组件的使用 Tabs组件仅可包含子组件TabsContent,每一个页签对应一个内容视图,即TabContent组件。 8. 生命周期 每一个自定义组件都有自己的生命周期。 9. 首选项preferences的使用 首选项preferences是以Key-Value形式存储数据,其中Key是唯一的。 10. @Component修饰的自定义组件 所有使用@Component修饰的自定义组件都支持onPageShow,onBackPress和onPageHide生命周期函数。 11. @customDialog修饰器 @customDialog修饰器用于装饰自定义弹窗组件,使得弹窗可以动态设置内容及样式。 12. Image组件加载网络图片 使用Image组件加载网络图片需要申请权限ohos.permission.INTERNET。 13. 发起网络数据请求 发起网络数据请求需要导入http模块,例如import http from '@ohos.net.http'。 14. Web组件的使用 Web组件支持多种属性的设置,例如javaScriptAccess(true)表示允许执行JavaScript脚本。Web组件也支持onConfirm、onConsole等多种事件。 15. 容器组件Row和Column的使用 Row容器的主轴是水平方向,交叉轴是垂直方向。Column容器的主轴是垂直方向,交叉轴是水平方向。justifyContent和alignItems属性用于设置子组件的对齐方式。 16. 入口组件 使用@Entry修饰的组件可作为页面入口组件。 17. 首选项key的最大长度限制 首选项key的最大长度限制大小为80字节。 18. UIAbility的启动模式 UIAbility支持单实例、标准模式和指定实例3种启动模式,在module.json中通过launchType配置。
2024-11-13 11:38:38 9KB harmonyos harmonyos
1
Hi3518A/Hi3518C/Hi3518E/Hi3516C U-boot 移植应用 开发指南 Hi3518A 单板的 Bootloader 采用 U-boot。当选用的外围芯片的型号与单板上外围芯片 的型号不同时,需要修改 U-boot 配置文件,主要包括存储器配置、管脚复用。 在 Hi3518A 单板上所选用的外围芯片型号如下: z DDR SDRAM:K4B1G1646E-HCH9 z NAND Flash:TC58NVG1S3ETA00 z SPI Flash:MX25L12835E 如果选用的外围芯片不是以上型号时,需要适当修改 SDK 中的 “osdrv/tools/pc_tools/uboot_tools”目录下的配置表格,对应的单板才能正常运行。
2024-11-11 00:20:43 1.08MB 3518E
1
### LabView 数据保存应用 #### 一、引言 LabVIEW是一种基于图形化的编程环境,以其独特的编程方式和直观的用户界面,在虚拟仪器领域占据着举足轻重的地位。相较于传统的文本编程语言,LabVIEW使用图形化的方式进行编程,使得程序员能够通过拖拽图标和连接线来构建程序流程,极大地简化了编程过程并提高了效率。此外,LabVIEW还拥有强大的数据处理能力和丰富的文件操作函数库,使其在数据采集、分析和存储方面具备显著优势。 #### 二、LabVIEW中的数据保存技术 在LabVIEW中,数据保存是一项重要的功能,尤其是在单片机与PC机之间的串行通信场景下。本文主要讨论基于LabVIEW的数据保存技术及其在实际工程项目中的应用。 ##### 2.1 数据保存的需求分析 在实际的工程应用中,经常需要对采集到的数据进行显示、保存和回读。具体来说: - **显示**:通常是为了让操作人员能够实时观察到数据的变化情况。 - **保存**:确保数据能够被长期存储下来,以便后续的分析或记录。 - **回读**:从存储介质中读取已保存的数据,用于进一步处理或展示。 为了满足这些需求,LabVIEW提供了多种数据保存的方法和技术。 ##### 2.2 数据保存文件格式 在LabVIEW中,支持多种文件格式用于数据保存,每种格式都有其特点和适用场合: - **ASCII字节流**:适用于需要与其他软件兼容的情况,例如与文本编辑器或电子表格程序交互。 - **数据日志文件**:采用二进制格式,仅能被G语言访问,适用于数据量大且不需要跨软件共享的情况。 - **二进制字节流**:提供最紧凑、最快的存储方式,适用于对性能有较高要求的应用。 - **LabVIEW测试数据文件(.lvm)**:一种特定格式的文本文件,不仅包含数据,还包括数据生成的时间戳等元数据信息。 - **TDM文件格式**:NI Test Data Manager文件格式,支持高级的数据管理功能。 - **ActiveX方式**:通过调用Word等应用程序生成测试报告文档。 ##### 2.3 基本文件I/O功能函数 在LabVIEW中,文件I/O操作是通过一系列内置的功能VI(Virtual Instrument)实现的,主要包括文件的打开、读写和关闭等基本操作。 - **WriteFile VI**:用于向文件写入数据,通过设置位置模式(pos mode)和偏移量(pos offset)可以指定数据写入的位置。 - **ReadFile VI**:用于从文件中读取数据,同样可以通过位置模式和偏移量来指定读取数据的起始位置。 此外,LabVIEW还支持通过VISA(Virtual Instrument Software Architecture)接口实现与外部硬件(如串口设备)的通信,从而获取原始数据。VISA作为一种标准的I/O应用程序接口(API),可以与不同类型的仪器(如VXI、GPIB及串口仪器)进行通信。 #### 三、工程实例 假设在某项目中,我们需要实现对测试过程中数据的动态控制,即根据测试状态来决定是否需要保存当前数据。具体来说,当系统处于初始测试阶段时,可能只需要观察系统状态而无需存储数据;一旦系统达到预定条件,才开始实时保存数据。 在这种情况下,我们可以利用LabVIEW的文件I/O功能结合VISA通信接口来实现这一需求。使用VISA接口从串口设备获取数据,并将其暂时存储在内存中。接着,通过程序逻辑判断是否满足存储条件,若满足,则使用WriteFile VI将数据保存到指定文件中。 #### 四、结论 通过对LabVIEW中数据保存技术的深入探讨,我们了解到其不仅支持多种文件格式的选择,还提供了丰富的文件I/O操作函数,这为工程师们在设计数据采集系统时提供了极大的灵活性和便利性。同时,结合VISA等通信接口,LabVIEW还能实现与外部硬件的有效交互,进一步增强了其在自动化测试和测量领域的应用潜力。
2024-11-08 16:33:06 198KB 数据保存
1
光电探测技术是一种利用光电效应将光信号转换为电信号的技术。光电倍增管(PMT,PhotoMultiplier Tube)是一种利用光电效应工作的电子器件,广泛应用于高灵敏度和高速光信号探测。光电倍增管具有高灵敏度、高响应速度和较大的接受面积等特点,能够探测微弱的光信号以及快速脉冲光信号。光电倍增管的基本工作原理是利用光电效应和次级电子发射的倍增过程。当光子入射到光阴极上,会产生光电子,这些光电子被电场加速并聚焦到第一个倍增极上,每个光电子在倍增极上产生3~6个二次电子,经过一系列倍增极的增益作用,最终在阳极收集到10^4~10^9个电子,从而输出较大的光电流。 在设计光电倍增管的应用电路时,需要考虑多个方面,以确保电路设计合理并能够有效地放大和处理光电倍增管的输出信号。通常,光电倍增管的应用电路包括负高压偏置电路、阳极电流I/V转换电路和同比例放大电路。负高压偏置电路能够为光电倍增管提供适当的电压,使得电子加速和倍增过程能够顺利进行。阳极电流I/V转换电路用于将收集到的电流信号转换成电压信号。而同比例放大电路则是将I/V转换后的电压信号进一步放大,以便后续的信号处理。通过对各个部分电路的精确设计和优化,可以得到较高的信号放大能力,并减小与实际测量结果的误差。本文的设计仿真结果与实际实验测得的输出电压误差为0.781mV,显示出电路设计的高精度和可靠性。 根据本文的介绍,光电倍增管的外围电路设计是否合理,会直接影响到探测器的工作范围和效果。外围电路需要根据探测系统的具体要求来进行设计,以确保光电倍增管的工作性能可以得到充分发挥。常见的光电倍增管类型包括直线聚焦型、环状聚焦型、百叶窗非聚焦型、盒式非聚焦型等,不同的类型适用于不同的应用环境和要求。 在20世纪80年代之后,光电倍增管进入快速发展的阶段,出现了各种结构和功能的光电倍增管。光电倍增管的应用范围非常广泛,包括医学成像、高能物理实验、天文学观测、核辐射监测等领域。由于其在探测微弱光信号方面的能力,光电倍增管成为了闪烁体探测器中不可或缺的组成部分。在实际应用中,根据探测器的特定需求,对光电倍增管的外围电路进行精心设计和调整,可以极大地提高探测器的性能,满足科研和工业应用中的高标准要求。
2024-11-07 20:25:24 1.35MB 光电探测技术
1
随着信息技术与编程技术的发展,人们越来越依赖搜索引擎搜索想要的信息。一样的,大学生毕业在面临就业的时候,会通过特定的搜索引擎搜索相关工作岗位。因此,为了减少大学生查找工作岗位信息的时间,而能够花更多的时间用来提升自己的专业能力和对面来的规划,本文在Python和Scrapy环境的基础下,以Boss招聘网站的通信岗位为抓取目标,在学习了基础的爬虫知识后,用Scrapy框架进行了一个获取Boss通信岗位信息的网络爬虫。在获取到相关数据后,对这些数据进行处理,并对其内容进行了简单的可视化。同时为了更直观的,更方便的观看这些爬取的信息,采用了No Sql的图形数据库neo4j存储每个岗位的具体信息。并修改了网上的开源项目做了一个简单的关于通信岗位就业信息的问答机器人。
2024-11-06 14:06:35 6.41MB 网络 python 爬虫 毕业设计
1
"基于智能手机的人体跌倒检测系统" 智能手机的人体跌倒检测系统是一种基于信号向量模和特征量W相结合的跌倒检测算法,利用加速度传感器和陀螺仪监测人体姿态变化,有效减少了跌倒检测结果的假阳性和假阴性。该系统可以实时监测人体活动,结合GPS确定用户的跌倒位置,同时降低系统成本。 该系统的检测算法设计基于智能手机内置的加速度传感器和陀螺仪,分别测量三轴方向运动加速度和角速度大小信息。通过使用信号向量模(magnitude of signal vector, SVM)阈值法来识别区分低强度日常生活活动(activities of daily living, ADL)与跌倒,对于阈值法不能识别的较高强度ADL,则通过对角速度信号向量模数据进一步处理得到的新特征量来判别。 信号数据人体活动主要分为以下几种:躺下、步行、坐下—起立、上楼梯、下楼梯、慢跑、蹲下—起立以及跌倒等。智能手机的加速度传感器和陀螺仪输出的信号数据可以反映出人体日常运动姿态变化。 信号向量模(SVM)是跌倒发生时的加速度及角速度变化的主要特征量,可以将空间的加速度或角速度变化集合为一矢量。加速度信号向量模(SVMA)及角速度信号向量模(SVMW)的定义分别如式(1)和式(2)所示。 跌倒检测方法设计中,通过对人体摔倒过程及其它日常生活行为过程中实验结果数据SVMA和SVMW进行分析,识别跌倒的加速度信号向量模阈值取SVMAT =20m/s2 和角速度信号向量模阈值取SVMWT =4rad/s。 然而,慢跑等动作也具有大加速度和角速度峰值的特征,单独的SVM 特征量并不能区分摔倒过程与慢跑或手机日用等较高强度运动过程。因此,本文对角速度信号向量模数据作进一步处理,来寻找新的特征量。定义一个人体跌倒时躯干倾斜的合角度θ,它是通过对角速度信号向量模数据进行积分得到的。 该系统可以实时监测人体活动,结合GPS确定用户的跌倒位置,同时降低系统成本。该系统的检测算法设计基于智能手机内置的加速度传感器和陀螺仪,能够有效减少跌倒检测结果的假阳性和假阴性。
2024-11-04 15:47:14 1.12MB 智能手机 人体跌倒 检测系统 技术应用
1