《正点原子系列之TFTLCD电容触摸屏模块》 在嵌入式系统开发领域,TFTLCD(Thin Film Transistor Liquid Crystal Display)电容触摸屏模块是常见的人机交互设备,它提供了清晰的显示效果和灵敏的触控体验。正点原子系列的这一模块,专注于为开发者提供一个高效、易用的平台,以便于实现各种项目的触摸控制功能。下面,我们将深入探讨该模块的相关知识点。 1. **TFTLCD技术**:TFTLCD技术基于液晶显示器,采用薄膜晶体管作为每个像素的开关,提高了显示质量和响应速度。这种技术能够呈现丰富的色彩,且视角宽广,适合于各种应用场景。 2. **电容触摸屏**:电容触摸屏利用人体的电容来感知触摸,其工作原理是通过检测手指与屏幕间电容的变化。相比电阻式触摸屏,电容触摸屏具有更高的灵敏度,支持多点触控,但对环境湿度和导电物体有一定程度的敏感性。 3. **模块组成**:正点原子的TFTLCD电容触摸屏模块通常包含以下几个部分:TFT显示屏、电容触摸控制器、驱动电路和接口。控制器负责处理触摸信号并将其转换为可读取的数据,驱动电路则确保屏幕正常显示。 4. **STM32程序源码**:STM32是意法半导体公司推出的基于ARM Cortex-M内核的微控制器系列,广泛应用于嵌入式系统。源码通常包含了初始化设置、触摸事件处理和屏幕显示等核心功能,为开发者提供了快速上手的示例。 5. **原理图说明**:原理图是理解硬件设计的关键,它展示了各个组件如何连接以及电源、信号线的布局。通过阅读原理图,开发者可以了解模块的工作流程,进行定制化开发或故障排查。 6. **学习资源**:正点原子提供的资料通常包括详细的用户手册、开发指南和示例代码,这对于初学者和经验丰富的工程师都是宝贵的参考资料。通过这些资源,学习者可以快速掌握如何配置和使用该模块。 7. **应用领域**:TFTLCD电容触摸屏模块广泛应用于智能家居、工业控制、医疗设备、车载娱乐系统等领域,它的高清晰度和良好交互性使得它成为人机界面的理想选择。 总结,正点原子的TFTLCD电容触摸屏模块结合了先进的显示技术和触控技术,为嵌入式系统开发提供了强大的工具。通过深入学习其原理和实践,开发者可以更好地理解和应用此类模块,实现创新的项目设计。
2025-07-23 17:32:47 32.63MB ATK-7'
1
1.本源码适合刚学完江科大stm32(stm32f103c8t6+标准库+面包板、杜邦线),接下来学freertos的同学参考。 2.本人就是如上流程,学习中遇到各种奇奇怪怪的问题苦苦查找csdn,评论区,gpt等方式才解决问题(移植源代码,花样报错)。 3.因为正点原子是hal库,且板子型号为STM32F4,官方的源码都不能直接拿来烧录, 为了让新同学们不踩我曾踩过的坑,所以自己规范的写了一遍每个章节的完整源码(工程模板参考评论区大佬)。 4.每个工程都亲测成功无bug,注释分明。 5.附赠归纳好的FreeRTOS API合集,方便用时查阅。 6.正点原子yyds!!!
2025-07-23 16:48:25 297.3MB stm32 freertos
1
原子物理学】是物理学的一个重要分支,主要研究原子的结构、性质以及它们与电磁辐射的相互作用。在《原子物理学》部分习题答案(杨福家)第四版中,涉及了多个关键概念和计算。 1. **能级与频率的关系**: 依据波尔理论,原子中的电子在不同能级间跃迁会发出或吸收特定频率的光。光的频率(ν)和波长(λ)可以通过以下公式计算: \[ ν = \frac{E_n - E_m}{h} \] \[ λ = \frac{c}{ν} \] 其中,E_n 和 E_m 分别是电子跃迁前后的能量,c 是光速,h 是普朗克常数。习题中的计算展示了如何利用这些公式来求解具体问题。 2. **类氢原子**: 类氢原子是指具有一个电子的离子,如 He+(Z=2) 和 Li++(Z=3)。这些离子的能级结构与氢原子相似,可以用里德伯公式来描述,其中 Z 表示原子的核电荷数。题目中给出了 r(轨道半径)和 v(速度)的计算,以及结合能和激发能的计算。 3. **结合能与激发能**: 结合能是电子在基态时与原子核结合所需能量的负值,表示为 E_b。激发能是从基态跃迁到更高能级所需的能量,表示为 E_{exc}。结合能和激发能的计算涉及量子力学中的波恩-奥本海默近似和库仑势能。 4. **光谱选择定则**: 在原子光谱中,某些特定的跃迁是允许的,称为选择定则。例如,2-32-72-82-11选择定则描述了电子在不同能级间的跃迁。这些规则是基于电子角动量的量子数变化。 5. **钠原子的共振线**: 钠原子的共振线是其特征谱线之一,对应于电子从某一能级跃迁到基态时释放的光。波长可以通过波尔理论计算得到,例如题目中给出了钠原子的共振线波长。 6. **晶格常数与晶面间距**: 在固态物理中,晶格常数(a)和晶面间距(d)是描述晶体结构的重要参数。3-3部分涉及到通过布拉格定律来计算特定晶面的反射角。 7. **不确定度原理**: 海森堡的不确定度原理指出,粒子位置(Δx)和动量(Δp)的不确定性之间存在基本限制,即 ΔxΔp ≥ ħ/2。在3-7的讨论中,利用这个原理估算电子的最小动能,并分析了这个动能对原子结构的影响。 8. **电子束缚能**: 在3-8部分,电子被束缚在原子核附近时,其最小动能可以通过不确定度关系来估算。这是量子力学中理解原子稳定性的重要方面。 9. **波函数与概率分布**: 3-11和3-12探讨了氢原子在不同能级时的波函数,比如1S和2P态。波函数可以给出电子在空间中出现的概率分布,以及电荷密度的极大值条件。 10. **量子数与能级**: 4-14和4-3涉及了更高的量子数,如l和j,它们定义了多电子原子的能级结构。玻尔磁子和朗德因子与原子在磁场中的行为有关,影响原子的光谱。 这部分习题涵盖了原子物理学的基础概念,包括能级、跃迁、光谱、固体物理的晶格结构,以及量子力学中的波函数和不确定性原理等。通过解决这些问题,学生可以深入理解原子的微观世界。
2025-06-22 16:07:48 613KB 原子物理学
1
原子物理课件楮圣麟版》是一份深入讲解原子物理学的教育资源,主要适用于学习者了解和掌握原子物理学的基础知识。这份课件详尽地介绍了原子物理学的发展历程和其在不同领域的应用,以及原子的基本性质,如质量和大小,并进一步探讨了原子的核式结构。 原子物理学的发展历程始于17世纪,牛顿对光学的研究奠定了基础,接着道尔顿在19世纪提出了原子理论。随后,伦琴发现了X射线,贝克勒尔发现了放射性,汤姆逊揭示了电子的存在,普朗克引入了量子概念,玻尔则构建了著名的原子模型。这些科学家的贡献为原子物理学的发展铺平了道路。原子物理学在化学、现代天文学、结晶学、生物科学以及材料科学等领域都发挥着重要作用,是理解物质本质和推动科技进步的关键学科。 课件中的第一章重点讨论了原子的基本状况。原子的质量分为相对值(原子量)和绝对值,通常以原子质量单位(u)表示,与阿伏伽德罗常数关联。原子大小的估算则涉及原子质量密度和原子半径,通过计算可得出原子占据的空间大约在1Å量级。这些信息揭示了原子内部结构的特点,即原子由带负电的电子和带正电的核组成,电子质量远小于原子总质量,而原子的大部分质量集中在原子核中。 第二章深入探讨了原子的核式结构,通过α粒子散射实验来证明这一理论。汤姆逊的模型假设原子是均匀分布的,但无法解释大角度散射现象。而卢瑟福的模型提出原子由中心的原子核和环绕其周围的电子构成,可以成功解释实验观察到的大角度散射。库仑散射公式进一步描述了α粒子与原子核的相互作用,展示了瞄准距离与散射角之间的关系,证实了原子核的存在及其对α粒子的强大影响。 课件内容还包括对散射实验的理论分析,如粒子的运动轨迹、角动量守恒等物理原理,这有助于学生深入理解原子结构的微观世界。 《原子物理课件楮圣麟版》是一份全面介绍原子物理学的宝贵资料,不仅涵盖了历史发展和基本概念,还深入剖析了原子结构的关键实验和理论。对于想要深入了解原子物理的学生或研究者来说,这是一个不可多得的学习资源。
2025-06-20 18:02:57 8.89MB 原子物理
1
1.带UCOSⅢ操作系统 2.以方块作为地鼠 3.可使用触摸屏进行打地鼠操作 4.可用正点原子自带9针FC游戏手柄进行打地鼠操作 5.有存储读入功能,在Flash中进行存储 6.压缩包内说明为操作说明 7.硬件配置查看正点原子战舰V3型号
2025-06-09 15:48:13 6.27MB stm32
1
基于正点原子阿波罗F429开发板的LWIP应用(1)——网络ping通文章MDK工程和CubeMX工程
2025-05-28 12:40:07 2.02MB STM32 LWIP
1
FreeMODBUS是一个奥地利人写的Modbus协议。它是一个针对嵌入式应用的一个免费(自由)的通用MODBUS协议的移植。Modbus是一个工业制造环境中应用的一个通用协议。Modbus通信协议栈包括两层:Modbus应用层协议,该层定义了数据模式和功能;另外一层是网络层。本源码在正点原子的工程框架下移植了 FreeModbus从机协议,可正常使用(QQ:1349212195)
2025-05-22 13:45:58 6.74MB FreeModbus STM32 正点原子
1
STM32是一款基于ARM Cortex-M内核的微控制器,由意法半导体(STMicroelectronics)生产,广泛应用在嵌入式系统设计中。本教程将详细介绍如何使用STM32CubeMX工具来快速设置一个使用FreeRTOS操作系统的基础工程,特别针对STM32F103C8T6开发板,这是正点原子系列中的一款经典开发平台。 **1. STM32CubeMX介绍** STM32CubeMX是意法半导体官方提供的配置工具,它允许用户通过图形化界面配置STM32微控制器的外设、时钟、中断等参数,并自动生成初始化代码,支持多种开发环境如Keil MDK、IAR EWARM以及GCC等。 **2. FreeRTOS简介** FreeRTOS是一个轻量级、实时的操作系统,适用于嵌入式系统,尤其是资源有限的微控制器。它提供任务调度、同步、通信等功能,便于开发者构建多任务的嵌入式应用程序。 **3. 配置步骤** - **启动STM32CubeMX**:下载并安装STM32CubeMX软件,打开后选择所需的STM32系列,这里选择STM32F103C8Tx。 - **设置处理器参数**:在处理器配置界面,根据项目需求调整时钟频率、功耗模式等。 - **添加FreeRTOS组件**:在“Middleware”选项卡中,勾选FreeRTOS,然后进行相关配置,如任务数量、优先级、堆内存大小等。 - **配置开发板外设**:根据项目需求,配置GPIO、定时器、串口等外设,为后续FreeRTOS任务提供硬件接口。 - **生成代码**:完成配置后,点击“Generate Code”,STM32CubeMX会自动生成初始化代码,包括FreeRTOS的配置。 **4. 创建工程** - 将生成的代码导入到开发环境,如Keil MDK或IAR EWARM。 - 在项目中添加FreeRTOS库,以及必要的FreeRTOS API函数,如xTaskCreate()用于创建任务,vTaskDelay()用于延时,xSemaphoreTake()和xSemaphoreGive()用于信号量操作等。 - 编写FreeRTOS任务函数,实现具体功能。 **5. 正点原子FreeRTOS实验** 正点原子提供了丰富的FreeRTOS实验教程,这些实验涵盖了基本的任务创建、信号量、互斥锁、队列、时间基等FreeRTOS核心概念。通过这些实验,开发者可以深入理解FreeRTOS的使用方法,提高嵌入式编程能力。 **6. 注意事项** - 谨慎调整STM32CubeMX中的内存分配,确保有足够的RAM空间运行FreeRTOS和应用任务。 - 注意FreeRTOS的任务调度机制,合理设定任务优先级,避免优先级反转问题。 - 确保FreeRTOS任务之间的通信方式正确,如使用信号量、消息队列等,防止死锁。 通过以上步骤,你将能够创建一个基于STM32CubeMX和FreeRTOS的基础工程,为STM32F103C8T6开发板的正点原子实验提供起点。不断学习和实践,你将更好地掌握STM32和FreeRTOS的结合使用,提升你的嵌入式开发技能。
2025-05-14 22:47:42 1.21MB stm32
1
《基于正点原子STM32F407的FreeRTOS移植工程详解》 在嵌入式系统开发领域,实时操作系统(RTOS)起着至关重要的作用,它为多任务并发执行提供了基础架构。FreeRTOS作为一款轻量级、开源的RTOS,被广泛应用在各种微控制器项目中,包括正点原子STM32F407开发板。本文将深入探讨如何将FreeRTOS移植到基于STM32F407的系统中,并分享"基于正点原子STM32F407的FreeRTOS移植工程"的相关知识点。 1. **FreeRTOS简介** FreeRTOS是一款高度可裁剪的RTOS,适用于资源有限的嵌入式设备。它具有任务调度、中断处理、信号量、互斥锁、队列等核心功能,为开发者提供了高效的多任务管理环境。 2. **STM32F407简介** STM32F407是意法半导体(STMicroelectronics)推出的高性能ARM Cortex-M4内核微控制器,具备浮点运算单元(FPU)、高速存储器和丰富的外设接口,适合用于需要高性能计算和实时响应的场合。 3. **移植准备** 在移植FreeRTOS到STM32F407之前,需确保开发环境搭建完毕,包括STM32CubeMX配置工具、Keil uVision或IAR Embedded Workbench等IDE,以及相关的HAL库和STM32固件库。 4. **配置FreeRTOS** 使用STM32CubeMX配置STM32F407的时钟、中断、内存分配等参数,然后生成初始化代码。FreeRTOS的配置包括任务数量、任务堆栈大小、优先级等。在FreeRTOSConfig.h文件中进行这些配置。 5. **FreeRTOS任务创建** 在初始化代码中创建FreeRTOS任务。每个任务都有一个入口函数和优先级,通过xTaskCreate()函数创建。例如,可以创建一个负责LED闪烁的任务和另一个负责串口通信的任务。 6. **中断服务例程与RTOS集成** FreeRTOS支持中断,中断服务例程必须遵循特定规则,如禁止全局中断、使用portENABLE_INTERRUPTS()恢复中断、使用任务通知或信号量与任务同步。 7. **同步机制** FreeRTOS提供信号量、互斥锁和队列等同步机制。例如,当串口接收到数据时,可以通过队列传递给任务进行处理,保证数据的正确传输。 8. **FreeRTOS内存管理** FreeRTOS提供了内存分配函数,如pvPortMalloc()和vPortFree(),用于动态分配和释放内存。但要注意,STM32的内存布局可能需要自定义内存池。 9. **调试与优化** 完成基本移植后,通过调试器或串口输出查看RTOS运行状态,如任务状态、CPU利用率等。根据性能需求优化任务调度、中断处理和内存分配。 10. **持续学习与实践** "FreeRTOSѧϰ"和"FreeRTOS学习"文件可能包含了更多关于FreeRTOS的教程和示例,通过深入学习和实践,可以掌握FreeRTOS的高级特性,如时间片轮转、定时器、软件定时器等。 总结,将FreeRTOS移植到正点原子STM32F407的过程中,需要理解RTOS的工作原理,熟悉STM32的硬件特性,以及灵活运用FreeRTOS的各种机制。这个过程不仅是技术的挑战,也是对嵌入式系统设计能力的提升。通过不断学习和实践,开发者能够充分发挥FreeRTOS的优势,实现高效、可靠的嵌入式系统设计。
2025-05-06 15:19:58 111.13MB stm32
1
【正点原子】I.MX6U嵌入式Qt开发指南V1.1.rar 正点原子的qt相关开发文档
2025-04-22 10:05:00 23.72MB
1