内容概要:本文档由广州慧谷动力科技有限公司提供,旨在介绍ROS机器人操作系统的基础知识。文档首先概述了ROS的概念、架构设计、文件系统及其主要特点,强调了ROS作为一种中间件,提供硬件抽象、底层设备控制、进程间消息传递等功能。接着,文档详细介绍了ROS的系统结构,包括工作空间与功能包的创建、启动ROS例程、通讯机制(如话题通信和服务通信)等。此外,还讲解了ROS命令行工具和相关工具的使用,包括rostopic、rosservice、rosparam、rosbag等,并演示了如何使用RViz进行数据可视化。最后,文档介绍了launch文件的编写方法,通过具体实例展示了如何批量启动多个节点。 适合人群:具备一定编程基础,尤其是对机器人开发感兴趣的初学者和工作1-3年的研发人员。 使用场景及目标:①理解ROS的基本概念、架构设计和文件系统;②掌握创建ROS工作空间和功能包的方法;③学习启动ROS例程、调试和运行代码;④熟悉ROS的通讯机制,包括话题通信和服务通信;⑤掌握ROS命令行工具和相关工具的使用;⑥学会编写launch文件批量启动多个节点。 其他说明:文档提供了丰富的实例和操作步骤,帮助读者更好地理解和实践ROS的各项功能。建议读者在学习过程中结合实际操作,逐步掌握ROS的使用技巧。此外,文档还提及了一些高级应用,如通过RViz进行数据可视化,有助于读者进一步拓展技能。
1
本书系统介绍多智能体系统的控制理论与Python仿真,涵盖一致性、覆盖与编队控制等核心内容,并延伸至分布式优化与病毒传播建模。适合控制、计算机与工程领域研究生及研究人员,兼具理论深度与实践代码,助力快速掌握协同控制前沿。 多智能体系统由多个自主个体组成,这些个体能够协作执行复杂任务,如搜索、监视、探索和导航等。在多智能体系统中,个体间需要通过通信、感知和决策来协同工作,这要求每个智能体具有一定的智能水平和通信能力。多智能体系统的控制理论研究如何设计和分析智能体间的交互机制,以及如何通过这些机制实现高效的任务执行。 一致性问题关注的是系统中所有智能体能否达成并保持某种共识状态。在多智能体系统中,一致性算法使得一组初始状态不同的智能体能够通过局部信息交换和一定策略,最终在状态上达成一致。一致性控制广泛应用于机器人编队控制、分布式计算、传感器网络和无人机群控制等领域。 覆盖与编队控制是多智能体系统中的另一个重要研究方向。覆盖控制主要研究智能体如何分布于某个区域内以执行覆盖任务,例如环境监测、搜索救援等。而编队控制则关注智能体如何协同移动以形成特定的形状或队形。这些控制策略在多机器人系统、卫星编队控制、无人航空器编队飞行等领域具有重要应用。 分布式优化处理的是如何在多智能体系统中分散地解决优化问题。该问题要求智能体能够在缺乏全局信息的情况下,通过相互交流和协作,达成全局最优解或近似最优解。分布式优化方法在电力系统、交通管理、无线网络等领域都有实际应用。 病毒传播建模是研究传染病在人口群体中传播的数学模型,通过多智能体系统模型可以模拟不同个体间的相互作用及其对病毒传播的影响。这类模型有助于公共卫生政策制定者理解和预测疾病爆发趋势,从而采取有效的防控措施。 Python作为一种编程语言,在多智能体系统的仿真研究中具有重要作用。它的易学易用、丰富的库支持以及强大的数据处理能力,使得研究人员能够快速搭建仿真平台并实现复杂的控制策略。Python在多智能体仿真中广泛应用于算法的快速原型开发、结果可视化以及数据分析等环节。 本书提供的内容不仅深入浅出地介绍了多智能体系统的控制理论,还通过Python仿真实践,帮助读者更好地理解理论知识并掌握其应用。书中包含大量理论分析和代码实例,通过这些内容,读者可以学习到如何使用Python进行多智能体系统的仿真,进而进行分布式优化和病毒传播建模等复杂任务。 本书适合控制、计算机与工程领域的研究生及研究人员阅读。该书不仅提供了多智能体系统的基础知识,还包括了利用Python进行模拟实验的方法。书中内容覆盖了从基础理论到实际应用的多个方面,使读者能够在理解多智能体系统控制的基础上,结合编程实践,深入研究和开发新的控制策略。 书中的章节设计和内容编排旨在帮助学生和教师更有效地利用教材。教材系列注重理论与应用的结合,不仅提供了理论知识,还包含了丰富的辅助教学材料。这些材料通过网络获取,覆盖了从仿真文件到课堂投影的pdf幻灯片、供教师下载的习题解答pdf等多种形式。教师可以通过这些资源来辅助教学和评估学生的学习进度。 本书是一本内容全面、理论与实践相结合的专业教材,旨在为控制和计算机工程领域的学生和研究者提供多智能体系统控制领域的最新研究成果和仿真应用工具。通过阅读本书,读者能够获得丰富的理论知识,并通过Python编程实践加深理解,最终实现协同控制前沿技术的快速掌握。
2025-10-22 12:11:34 13.5MB 多智能体 Python 分布式控制
1
TongRDS 是分布式内存数据缓存中间件,用于高性能内存数据共享与应用支持。TongRDS 为各类应用提供高效、稳定、安全的内存数据处理能力;同时它支持共享内存的搭建弹性伸缩管理;使业务应用无需考虑各种内存的复杂管理。 TongRDS 中心节点的安装包,安装步骤如下: 1.解压软件包 [root@pass ~]#tar -zxvf TongRDS-2.2.1.4.MC.tar.gz 2.查看目录内容 [root@pass pcenter]# ls bin etc lib 3.启动中心节点 [root@pass bin]# ./StartCenter.sh 4.停止中心节点 [root@pass bin]# ./StopCenter.sh
2025-10-21 11:21:06 8.46MB 分布式
1
IEEE 33节点配电网Matlab模型:附参数、支持分布式电源接入与电压调节功能,基于MATLAB模型的IEEE 33节点配电网参数详解:支持分布式电源接入与电压调节功能,matlab模型IEEE33节点配电网,附参数,可接分布式电源,电压可调 ,MATLAB模型; IEEE33节点配电网; 分布式电源接入; 电压可调; 参数附有。,MATLAB模型:IEEE 33节点配电网参数化,支持分布式电源接入及电压调整 在现代电力系统中,配电网的设计和管理是确保电力供应稳定和高效的关键。IEEE 33节点配电网作为一个典型的中压配电系统模型,广泛被学术界和工程界用于研究与实验。通过利用MATLAB这一强大的计算软件,工程师们能够构建模拟环境,对配电网进行深入的分析和优化设计。 IEEE 33节点配电网模型不仅适用于传统电网的规划和运行,它还支持分布式电源的接入,例如太阳能、风能等可再生能源。这样的设计使得配电网能够更好地适应能源结构的转变,提高电网的灵活性和可靠性。同时,模型还支持电压调节功能,这在确保电网稳定运行和优化电能质量方面起着至关重要的作用。 在这个模型中,配电网的设计和分析涉及多个方面。节点的设计对于电网的性能至关重要。每个节点代表了电网中的一个连接点,它可以是一个电源点、一个负载点,或是一个分接点。节点的设计直接影响到电能的流动和分配,因此需要精心计算和规划。 电压调节是配电网管理的另一个关键方面。电压水平的稳定性直接关系到电力系统的安全运行和用户体验。通过调节变压器的分接头位置、使用无功补偿设备等方式,可以有效地控制节点电压,维持电网的稳定运行。 分布式电源的接入为配电网带来了新的挑战和机遇。这些电源的输出具有不确定性,可能受到天气、时间等因素的影响。因此,在配电网模型中,需要考虑如何将这些可变的电源集成到电网中,同时保证系统的稳定性和供电质量。 在MATLAB中构建的IEEE 33节点配电网模型,不仅包含了电网的所有物理参数,还能够模拟各种运行条件下的电网行为。这包括负载变化、故障发生、以及分布式电源输出的波动等情况。通过这些模拟,研究人员和工程师可以预测电网在不同情况下的表现,从而优化电网设计和运行策略。 文件名称列表显示了一系列与IEEE 33节点配电网Matlab模型相关的文档,涵盖了从设计、分析到优化的各个方面。其中,“基于模型的节点配电网设计与分析一引言”可能提供了模型构建的背景和目的。“模型解析复杂配电网的电能质量与分布式电源管理”和“模型分析节点配电网与分布式电源接入一引言随”则可能深入探讨了配电网的电能质量和分布式电源管理问题。“模型节点配电网附参.html”可能详细列出了模型的参数设置,为研究和应用提供了基础数据。 IEEE 33节点配电网Matlab模型为配电网的研究与优化提供了一个强大的工具。通过这个模型,不仅可以进行传统电网的分析,还能适应分布式电源接入和电能质量管理的新挑战,是现代电力系统研究不可或缺的工具之一。
2025-10-18 18:23:29 1.01MB ajax
1
IEC 62439-6-2010 drp 分布式环网协议
2025-10-17 11:40:40 27.87MB 分布式
1
基于混合决策的完全自适应分布式鲁棒框架:Wasserstein度量的多阶段电力调度策略,基于混合决策与Wasserstein度量的完全自适应分布式鲁棒优化模型:应对风电渗透下电网调度挑战的研究,基于混合决策的完全自适应分布鲁棒 关键词:分布式鲁棒DRO wasserstwin metric Unit commitment 参考文档:无 仿真平台:MATLAB Cplex Mosek 主要内容:随着风电越来越多地渗透到电网中,在实现低成本可持续电力供应的同时,也带来了相关间歇性的技术挑战。 本文提出了一种基于混合决策规则(MDR)的完全自适应基于 Wasserstein 的分布式鲁棒多阶段框架,用于解决机组不确定性问题(UUC),以更好地适应风电在机组状态决策和非预期性方面的影响。 调度过程。 与现有的多阶段模型相比,该框架引入了改进的MDR来处理所有决策变量以扩展可行域,因此该框架可以通过调整决策变量的相关周期数来获得各种典型模型。 因此,我们的模型可以为一些传统模型中不可行的问题找到可行的解决方案,同时为可行的问题找到更好的解决方案。 所提出的模型采用高级优化方法和改
2025-10-16 17:24:59 165KB
1
研究了双PWM变换器结构的微型燃气轮机分布式发电系统的模型,基于下垂特性设计了永磁同步电机侧和网侧变换器的控制系统,可对永磁同步电机转速和变换器直流电压进行控制.利用Matlab建立了微型燃气轮机分布式发电系统的动态模型,对其在不同的负荷情况下进行了仿真.仿真结果表明,在负荷变化情况下,微型燃气轮机分布式发电系统具有较好的稳定性.引入的转子惯性响应能改善系统的动态品质,使整个系统承受较大的负荷冲击.
2025-10-14 21:47:36 337KB 自然科学 论文
1
内容概要:本文详细介绍了100kW微型燃气轮机在Simulink环境下的建模及其控制单元模块的分析。模型涵盖了压缩机、容积、回热器、燃烧室、膨胀机、转子和控制单元七大模块,特别强调了变工况下各参数(如流量、压缩绝热效率、膨胀绝热效率、压缩比、膨胀比)对系统性能的影响。文中还探讨了三种主要控制策略(转速控制、温度控制和加速度控制),并通过实例展示了这些控制策略在负载变化时的具体应用。此外,文章提供了具体的MATLAB/Simulink代码片段,解释了压缩比、转动惯量等关键参数的计算方法及其对系统稳定性的重要影响。 适合人群:从事分布式能源系统设计、微型燃气轮机研究及相关领域的工程师和技术人员。 使用场景及目标:适用于需要深入了解微型燃气轮机动态特性和控制策略的研究人员,帮助他们掌握Simulink建模技巧,优化系统性能,提高仿真精度。 其他说明:文章不仅提供了理论分析,还结合实际案例和代码示例,使读者能够更好地理解和应用所学知识。
2025-10-14 21:23:23 306KB Simulink MATLAB 分布式能源
1
利用UDEC7.0软件进行煤层开挖数值模拟的研究方法。首先构建了一个带有坡度的真实地表模型,通过一系列命令创建了不规则五边形坡体并设置了岩层节理。接着,针对煤系地层设定了合理的材料参数,如密度、弹性模量和内摩擦角等。然后,采用分三步开挖的方式逐步删除指定区域内的块体,并在每次开挖后执行求解命令以观察应力重新分布情况。此外,在关键位置布置了多个监测点用于记录地表沉降变化。最终结果显示,最大垂直位移发生在第二次开挖期间,达到了-32毫米,而坡脚处出现了拉应力区,最大主应力为-1.5兆帕。整个过程中强调了参数设定的重要性以及模型的真实性。 适合人群:从事地质工程、矿山开采等相关领域的研究人员和技术人员。 使用场景及目标:适用于需要评估煤层开挖对周围环境影响的研究项目,旨在帮助用户掌握UDEC7.0软件的具体操作流程及其在实际工程中的应用价值。 其他说明:文中提供了详细的命令行代码示例,便于读者理解和复现实验步骤。同时提醒使用者关注某些特定参数的选择,确保模拟结果更加贴近实际情况。
2025-10-12 20:48:25 1.08MB
1
“电气综合能源系统研究:利用分布鲁棒机会约束应对风电不确定性风险与模糊集处理”,电气综合能源系统中基于分布鲁棒机会约束的协同经济调度策略与仿真研究,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;全网独,恶意差评的请绕路 有意者加好友 注:非完美复现 研究内容:为了应对风电不确定性给电气综合能源系统带来的运行风险,采用分布鲁棒机会约束,通过数据驱动的方式,以少量的风电预测误差历史数据得到与矩信息有关的模糊集,并将形成的机会约束问题转化为易于求解的形式。 仿真软件:matlab 参考文档:《不确定风功率接入下电-气互联系统的协同经济调度》fuxian 注意事项[火][火]:代码注释详细,运行稳定,仿真结果如下所示。 ,分布鲁棒;复现;电气综合能源系统;分布鲁棒机会约束(DRCC);ADMM分布式算法;数据驱动;风电预测误差;协同经济调度;Matlab仿真;运行稳定。,分布式鲁棒策略下的电气综合能源系统研究与仿真实现
2025-10-09 15:32:29 535KB xbox
1