Python开发基于深度学习RNN(循环神经网络)空中目标意图识别系统(含完整源码+数据集+程序说明及注释).zip 【项目介绍】 程序为使用RNN循环神经网络进行意图识别的程序 程序设计语言为Python 3.7.6;开发环境为Anaconda。循环神经网络模型由Python的keras 2.3.0库实现。 数据集为:SCENARIO_DATA_UTF8.zip 代码可以生成损失函数曲线,精确度曲线; 可自定义修改梯度下降方法,损失函数。 【特别强调】 1、项目资源可能会实时更新,解决一些未知bug; 2、非自己账号在csdn官方下载,而通过第三方代下载,不对资源作任何保证,且不提供任何形式的技术支持和答疑!!! 百分百可运行,可远程部署+指导!
2025-11-13 23:24:07 4.27MB python 深度学习 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144420956 文件放服务器下载,请务必到电脑端资源预览或者资源详情查看然后下载 重要说明:此为小目标检测训练模型精度可能偏低属于正常现象 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):1395 标注数量(xml文件个数):1395 标注数量(txt文件个数):1395 标注类别数:5 标注类别名称:["Broken","Crack","Dent","Scratch","Spot"]
2025-11-13 22:13:15 407B 数据集
1
剪刀石头布检测数据集是一个面向目标检测任务的标注数据集,它包含1973张图片,这些图片被划分为三个类别,即剪刀、石头和布。数据集采用Pascal VOC格式和YOLO格式,提供了对应的标注文件,包括.xml文件和.txt文件,这些文件与.jpg图片一一对应。 数据集中的图片数量与标注文件数量都是1973个,说明每张图片都有相应的标注信息。在标注过程中,使用了名为labelImg的工具,它是广泛应用于目标检测任务的图像标注软件。在标注规则方面,该数据集采用矩形框来标注图片中的对象,这种做法在目标检测中是常见的,因为矩形框可以清晰地定义出目标对象在图片中的位置和尺寸。 标注类别总数为3,分别对应着三种手势:剪刀(bu)、石头(jiandao)、布(shitou)。每一个类别中的目标对象数量也有所提及,其中“剪刀”类别的目标框数为609个,“石头”为679个,“布”为685个。标注的总框数为1973,这表明数据集中的每张图片都至少包含一个矩形框,框中是对应该图片中手势的位置。 此外,数据集的标注类别名称分别用中文进行了命名,即“剪刀”、“石头”和“布”,这可能是为了便于理解标注者的意图,也可能是为了适应某些需要中文标签的特定应用场景。在数据集的使用方面,虽然提供了图片及其标注,但是制作者明确声明,他们不对由此数据集训练得到的模型或权重文件的精度作任何保证。这提示使用者,在应用数据集进行模型训练之前需要仔细检查标注的准确性,并可能需要进一步的数据清洗和增强步骤。 这份数据集非常适合用于机器学习和计算机视觉中目标检测模型的训练和验证,尤其是那些涉及手势识别、图像分类和实时对象检测的应用。由于其涵盖的手势种类有限,因此它也是一个入门级别的数据集,便于研究人员和开发者测试和调试他们的算法。 数据集的提供者没有提及任何特定的版权信息或使用限制,这可能意味着该数据集可以被广泛使用于学术研究和商业开发。不过,对于任何商业用途,建议还是先确认数据集的具体使用条款,以避免潜在的法律问题。此外,考虑到数据集的标注质量直接关系到最终模型的性能,使用者应当对标注进行仔细的审查和必要的修正,确保数据集的高质量能够帮助模型训练达到预期的效果。
2025-11-13 17:52:33 2.38MB 数据集
1
文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 样本图:blog.csdn.net/2403_88102872/article/details/144125917 重要说明:数据集里面有很多增强图片请查看图片预览 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):7958 标注数量(xml文件个数):7958 标注数量(txt文件个数):7958 标注类别数:9 标注类别名称:["Gloves","Helmet","Person","Safety Boot","Safety Vest","bare-arms","no-boot","no-helmet","no-vest"]
2025-11-13 10:04:20 407B 数据集
1
印度糖尿病视网膜病变图像(IDRiD)数据集是从印度一家眼科诊所的实际临床检查中获取的。所捕获的图像具有50º的视野,分辨率为4288 × 2848像素,并以jpg格式存储。最终数据集由516张图像组成,分为五类糖尿病视网膜病变(DR)和三类糖尿病黄斑水肿(DME),其特征根据国际临床相关标准进行了明确定义。数据集提供了典型的DR病变和正常视网膜结构的专家标注。它还提供了数据库中每张图像的DR和DME的疾病严重程度等级。此处仅提供DR和DME的严重程度等级。
2025-11-12 09:45:46 166.29MB 数据集
1
350多幅苹果树上自然生长的苹果图像yolo-v8数据集 由Roboflow用户提供 注释数据集包含350多幅苹果树上自然生长的苹果图像。与其他现有的套装不同,这套套装试图捕捉白天自然光照射不同的树上生长的苹果。 训练数据由彼得·布洛赫家中苹果树的77张照片组成。照片拍摄后,将其分割成多个较小的图像,每个图像的分辨率为360×640像素。此数字被选为稍后在该项目中使用的CV摄影机的最低自然分辨率。
2025-11-12 04:53:46 66.63MB 数据集
1
(手动整理)产业集聚水平数据集.txt
2025-11-10 18:12:06 72B 数据集
1
yolov5/yolov8/yolo11/yolo目标检测数据集,光伏面板红外图像热斑缺陷检测数据集,12736张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 3个类别:金色斑点、浅金色斑点、阴影。 图像分辨率为大分辨率RGB图片。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151869402 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-11-10 17:10:10 721.34MB yolov5数据集 yolo数据集
1
是一个专注于船舶性能分析的数据集,可在Kaggle平台找到。该数据集通过聚类技术对船舶的运行和性能数据进行分析,旨在揭示船舶性能的模式和规律,为船队优化和决策提供支持。该数据集包含了多种船舶的运行和性能数据,主要特征包括: 时间戳:记录数据的时间。 船速(节):船舶的平均速度。 发动机功率(千瓦):船舶发动机的输出功率。 航行距离(海里):船舶在航行过程中覆盖的距离。 运营成本(美元):船舶运行过程中的总成本。 每次航行收入(美元):每次航行所获得的收入。 能效(每千瓦时海里数):衡量船舶航行效率的指标。 船舶类型:如油轮、散货船等。 航线类型:如短途航线、沿海航线等。 天气条件:航行过程中遇到的天气情况。该数据集可用于多种分析和研究: 船队优化:通过聚类分析,航运公司可以了解不同类型船舶的性能表现,从而优化船队配置。 成本控制:分析运营成本与性能指标之间的关系,帮助航运企业降低运营成本。 能效提升:通过分析能效数据,识别高能效船舶的特征,为节能减排提供依据。 航线规划:根据航线类型和天气条件对船舶性能的影响,优化航线规划。
2025-11-10 16:38:03 304KB 机器学习 图像识别
1
铁轨缺陷检测数据集NEU-DET的Yolo格式,即NEU-DET_Yolo.zip,是一个专门针对铁路轨道缺陷检测优化的数据集,并采用了YOLO(You Only Look Once)格式。YOLO是一种流行的实时目标检测系统,它将目标检测任务视为一个回归问题,将边界框的预测和分类同时进行。这种格式的数据集在机器学习和计算机视觉领域中非常有用,特别是在提高铁路安全性的应用方面。 NEU-DET_Yolo数据集是经过精心策划和标注的,它包含了用于训练和评估机器学习模型的大量图像和对应的标注信息。这些图像专门针对铁轨缺陷进行了拍摄,图像中的铁轨可能包含裂纹、压痕、剥离、锈蚀、断裂等缺陷类型。对于每一个缺陷,数据集会提供精确的位置标注,这些标注通常以边界框的形式出现,标注了缺陷的具体位置和大小。 数据集的组织结构遵循YOLO格式的标准,这意味着每个图像文件对应一个文本文件,后者包含了标注信息。在YOLO格式中,每个标注文件通常包含多行,每行对应一个对象的标注,行中的每个数字代表了该对象的位置和类别信息。通常,前四个数字表示边界框的中心点坐标、宽度和高度,接下来的数字表示对象的类别索引。 此外,NEU-DET_Yolo数据集可能还包括用于训练和测试的数据分割,以确保模型可以正确地学习到从数据中泛化的能力。分割可能将数据集分为训练集、验证集和测试集,这样研究人员可以使用训练集来训练模型,使用验证集来调整超参数,最后使用测试集来评估模型的性能。 在实际应用中,铁路轨道缺陷的自动检测技术可以显著提高铁路的安全性和维护效率。通过对铁轨缺陷进行实时检测,能够及时发现潜在的安全隐患,避免可能发生的事故,从而保障列车和乘客的安全。此外,使用自动化检测方法还可以减少人工检测的需求,降低维护成本,并提高检测的准确性和一致性。 YOLO格式的数据集因其在实时检测任务中的优势而被广泛应用,它的高效性和准确性使其成为目标检测领域的首选算法之一。而NEU-DET_Yolo作为一个针对特定应用优化的数据集,其在铁路轨道缺陷检测领域的应用前景十分广阔。随着机器学习技术的不断进步,该数据集有望在未来的智能铁路维护系统中发挥重要作用。
2025-11-10 10:27:12 26.52MB
1