我们研究用Abelian规对称性进行压实的异质/ F-理论对偶性的方面。 我们考虑具有阶Mordell-Weil组的有理截面的一般Calabi-Yau流形上的F理论。 通过在一类复曲面模型中严格执行稳定的退化极限,我们导出了Calabi-Yau几何形状以及在异质对偶理论中描述矢量束的光谱覆盖范围。 我们在异质理论中采用椭圆曲线上的群律仔细研究了光谱覆盖率。 我们在显式示例中发现,在其低能效理论中,存在三类不同的具有U(1)因子的异质对偶:分裂光谱覆盖,描述具有S(U(m)×U(1))结构群的束,光谱 包含包含扭转截面的覆盖,这些扭转截面似乎引起SU(m)×ℤk $$ {\ mathrm {\ mathbb {Z}}} _ k $$结构组的束和具有纯非阿贝尔结构组且在其中具有扶正剂的束 包含U(1)因子的E 8。 在前两种情况下,要求异质侧的椭圆形纤维具有非平凡的Mordell-Weil组。 几何无质量的U(1)的数量完全由F理论侧的几何确定,而在杂波侧,通过考虑下方的Stückelberg机理可以找到正确的U(1)数量。 维有效理论。 在几何学上,这对应于以下条件:两个F3理论的稳定退
1