卷积神经网络;分类识别;数据增强与预处理;实时检测;
2022-05-11 21:06:05 4.97MB 文档资料 cnn 学习 人工智能
1
基于卷积神经网络的车辆检测与分类
2022-05-11 20:41:52 290KB 研究论文
1
卷积神经网络在字符识别方面的应用.doc
2022-05-11 09:10:58 1.48MB cnn 文档资料 人工智能 神经网络
验证码技术是确保网站安全性和用户信息隐私性的第一道保障。针对多样化的验证码,其识别技术也很多,传统验证码技术主要分为人工识别、字典模型识别和验证码图像分割识别,其中字典模型中较为典型的Tesseract-OCR,其识别率相对较低,过程操作复杂,需要对识别错误的文字做出修改不适合对复杂验证码做出高效迅速的识别。本文使用TensorFlow框架实现卷积神经网络算法对验证码进行识别,利用Captcha包下提供的ImageCaptcha()方法生成模拟现实网站的验证码,利用卷积神经网络对生成的验证码进行训练生成训练模型,通过训练模型进行对测试集的测试得到识别率,识别率可达到97%以上远超传统验证码识别算法。
1
卷积神经网络过程可视化方面的论文,非常详细,香港科技大学最新研究成果
2022-05-10 10:32:47 15.06MB CNN 可视化 卷积神经网络 浙江大学CG
1
卷积神经网络用于句子分类2014年论文的解读ppt,通过开题介绍卷积的概念,以及论文完成的工作突破性意义,以及论文中的模型构建
2022-05-09 17:02:23 716KB cnn
1
无人驾驶的感知部分作为计算机视觉的领域范围,也不可避免地成为CNN发挥作用的舞台。本文是无人驾驶技术系列的第八篇,深入介绍CNN(卷积神经网络)在无人驾驶3D感知与物体检测中的应用。卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种适合使用在连续值输入信号上的深度神经网络,比如声音、图像和视频。它的历史可以回溯到1968年,Hubel和Wiesel在动物视觉皮层细胞中发现的对输入图案的方向选择性和平移不变性,这个工作为他们赢得了诺贝尔奖。时间推进到上世纪80年代,随着神经网络研究的深入,研究人员发现对图片输入做卷积操作和生物视觉中的神经元接受局部receptiv
1
运用python实现卷积神经网络,解释CNN是如何一步一步的进行,很适合了解CNN的具体某一步!
2022-05-08 09:10:56 5KB python cnn 文档资料 开发语言
短文本分类是自然语言处理的一个研究热点.为提高文本分类精度和解决文本表示稀疏问题,提出了一种全新的文本表示(N-of-DOC)方法.采用Word2Vec分布式表示一个短语,将其转换成的向量作为卷积神经网络模型的输入,经过卷积层和池化层提取高层特征,输出层接分类器得出分类结果.实验结果表明,与传统机器学习(K近邻,支持向量机,逻辑斯特回归,朴素贝叶斯)相比,提出的方法不仅能解决中文文本向量的维数灾难和稀疏问题,而且在分类精度上也比传统方法提高了4.23%.
1
回归预测 | MATLAB实现CNN(卷积神经网络)多输入单输出(完整源码和数据) 多输入单输出,运行环境MATLAB2018b及以上。