python爬虫 豆瓣电影Top250数据分析与可视化(应用Flask框架、Echarts、WordCloud等技术)爬虫简单的来说就是用程序获取网络上数据这个过程的一种名称。 爬虫的原理 如果要获取网络上数据,我们要给爬虫一个网址(程序中通常叫URL),爬虫发送一个HTTP请求给目标网页的服务器,服务器返回数据给客户端(也就是我们的爬虫),爬虫再进行数据解析、保存等一系列操作。 流程 爬虫可以节省我们的时间,比如我要获取豆瓣电影 Top250 榜单,如果不用爬虫,我们要先在浏览器上输入豆瓣电影的 URL ,客户端(浏览器)通过解析查到豆瓣电影网页的服务器的 IP 地址,然后与它建立连接,浏览器再创造一个 HTTP 请求发送给豆瓣电影的服务器,服务器收到请求之后,把 Top250 榜单从数据库中提出,封装成一个 HTTP 响应,然后将响应结果返回给浏览器,浏览器显示响应内容,我们看到数据。我们的爬虫也是根据这个流程,只不过改成了代码形式。
2023-02-20 14:39:18 127.76MB python 爬虫
1
小程序海报生成工具,可视化编辑直接生成代码 体验地址 请点击这个链接体验 生成painter代码,充分利用painter的优势 小程序生成图片库,轻松通过 json 方式绘制一张可以发到朋友圈的图片 使用 git clone https://github.com/lingxiaoyi/painter-custom-poster.git npm i 启动本地服务器 npm run start How To Use 目前工具一共分成4部分 例子展示 用来将一些用户设计的精美海报显示出来,通过点击对应的例子并将代码导入画布中 画布区 显示真实的海报效果,画布里添加的元素,都可以直接用鼠标进行拖动,旋转,缩放操作 操作区 第一排四个按钮 复制代码 将画布的展示效果转化成小程序海报插件库所需要的json配置代码,目前我使用的是Painter库,默认会转化成这个插件的配置代码,将代码直接复制到card
2023-02-20 10:28:52 301KB JavaScript
1
(1)用户登录注册。 (2)修改密码。 (3)用户个人中心。 (4)图书展示 (5)图书推荐 (6)图书分类展示 (7)图书收藏 (8)收货地址管理 (8)后台数据管理,包括用户信息管理、图书信息管理、分类信息管理。 使用前请仔细查看说明文档
2023-02-19 20:39:08 94.05MB Python
1
labelme:用Python实现的图像可视化标记工具 labelme:带有 Python 的图像注释工具 Labelme 是一种图形图像注释工具,其灵感来自 http://labelme.csail.mit.edu。 它是用 Python 编写的,并使用 Qt 作为其图形界面。 要求 Ubuntu / macOS / Windows Python2 / Python3 PyQt4 / PyQt5 安装 有选项: 平台 agonistic 安装:Anaconda、Docker 平台特定安装:Ubuntu、macOS Anaconda 需要安装 Anaconda,然后在下面运行:conda create --name=labelme python= 2.7 source activate labelme conda install pyqt pip install labelme Docker 你需要安装docker,然后运行如下: wget https://raw.githubusercontent.com/wkentaro/labelme/master/scripts/label
2023-02-19 16:43:42 12.4MB 机器学习
1
基于大数据的空气质量数据可视化 作者:武 装 覃爱明 来源:《中外企业家·下半月》 2015年第1期 武 装 覃爱明 (首都经济贸易大学,北京 100070) 摘 要:近一个世纪以来,由于工业化、城市化的飞速发展、人类活动的加剧造成了世界性的能源、交通规模的持续扩大,城市人口的急剧膨胀,各类生产活动和生活中所产生的大量有害物质被排放到空气中,改变了空气的组成成分,形成了空气污染。空气污染是世界和中国大多数工业城市所面临的最为严重的环境问题。开展空气质量监测、数据分析与可视化的研究可以全面掌握城市空气污染源的排放数据和各种空气污染物在不同空间区域内的浓度数据,可以对影响城市空气质量的因素有所了解和把握。本文提出了利用空气污染观测资料和先进的大数据Hadoop平台,对空气监测数据进行数据挖掘和分析的思路,依据逐年逐日的天气现象数据,针对地区空气污染状况以及时间分布特征的影响进行研究,并以可视化的方法对空气污染物的时空分布特征与预测进行探讨。 关键词:大数据;可视化;空气质量;监测 中图分类号:N37 文献标志码:A 文章编号:1000-8772-(2015)03-0249-03 收稿日期:2015-01-19 基金项目:北京市哲学社会科学规划项目(14SHB015);北京市教育委员会社会科学研究计划项目(SM201410038013);首都经济贸易大学高等教育研究项目(项目名称:我校科研团队成长性及水平评价研究);北京市属高等学校高层次人才引进与培养计划项目(项目名称: 非完备信息系统中决策树生成算法及其优化研究)。 作者简介:武装(1970-),男,河北唐山人,博士,副教授。研究方向:大数据,可视化。 一、引言 空气污染对人类及其生存环境造成的危害与影响,已逐渐为人们所认识。近年来中国地区空气污染加剧,其中雾霾污染正演变成为城市大气污染的主要表现之一,引起了普通民众和科学界的广泛关注。空气污染对城市居民的健康风险、由此造成的经济损失以及对居民的健康影响都是不可估量的。空气污染主要通过三条途径危害人体:一是人体表面接触后受到伤害,二是食用含有大气污染物的食物和水中毒,三是吸入污染的空气后患上种种严重的疾病。不仅如此,空气污染危害生物的生存和发育,大气污染物对仪器、设备和建筑物等,都有腐蚀作用,空气污染还造成臭氧层破坏、酸雨腐蚀和全球气候变暖[1]。世界卫生组织和联合国环境组织发表的一份报告指出:"空气污染已成为全世界城市居民生活中一个无法逃避的现实。"如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈成了空中垃圾库和毒气库。因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难。 基于大数据的空气质量数据可视化全文共5页,当前为第1页。 自从计算机开始应用于可视化技术以后,人们发现了许多新颖的可视化技术,现有的技术也得到了改进。新技术和新平台的出现,使可视化技术可以实现用户与可视化数据之间的交互,从采集分析数据到呈现数据可视化也实现了一体化。中国近几十年来经济发展迅速,矿物能源大量消耗以及环境保护措施的欠缺,导致中国许多地区发生了严重的空气污染和水污染。空气污染是一个非常复杂的系统问题,它不仅涉及到人为与自然排放,同时也要考虑到当地气象以及区域气候条件的影响。大数据时代的来临,促进了更加智能的数据可视化工具的出现,云计算和虚拟化技术的不断发展使得大数据在应用层面更加丰富,再加以数据可视化,这样的大数据分析才更有意义,效率也才会更高。本文提出了以大数据分析为基础的空气质量数据可视化思路,对掌握城市空气质量在时间和空间维的变化发展趋势,对污染控制、环境管理和公共事业发展均有一定的理论意义与实用价值。 基于大数据的空气质量数据可视化全文共5页,当前为第1页。 二、大数据 (一)大数据的特征 大数据是一个体量特别大,数据类别特别大,超过传统数据库系统处理能力的数据集。大数据首先是指数据体量(volume)大,指大型数据集,至少在10TB规模以上,一般达到PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式包括了半结构化和非结构化数据;接着是数据处理速度(velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理;最后一个特点是指数据真实性(veracity)高,比如社交数据、企业内容、交易与应用数据等新数据源。 3V是大数据时代的显著特征,这些特征正在给现在的IT企业带来巨大挑战。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化信息资产。 (二)基于Hadoop的大数据分析技术 Hadoop是一个能够对大量数
2023-02-19 13:27:20 173KB 文档资料
1
摘要:随着大数据时代的日益发展,数据的获取与分析成为热点。本文通过利用Python抓取豆瓣TOP250的相关数据,并将数据存储在Excel文件中,借助Python功能完备的标准库、Requests、BeautifulSoup等第三方库编写程序实现豆瓣电影TOP250数据的抓取,后利用Jieba、NumPy等第三方库对所需数据进行数据预处理,再借助PyEcharts等第三方库对已处理好的数据进行数据可视化,最终得到词云图、网页动态图等图表,分别在电影类型、发行时间、导演、发行地区、评分及评价人数方面加以分析理解,从而得出数据之间的相关性、国内人群喜爱的电影类型等相关结论。
2023-02-19 08:55:56 975KB python 数据爬取 数据分析 数据可视化
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
一、实战场景 二、知识点 python 基础语法 python 文件读写 pandas 数据处理 flask web 框架 echarts 图表 jinja 模版 三、菜鸟实战 初始化 Flask 框架,设置路由 各行政区房屋均价柱状图分析 echarts 渲染柱状图 各面积区间房屋占比饼状图 echarts 渲染饼状图 运行结果 运行截图 数据示例
1
基于Python的电影信息爬取与数据可视化分析.pdf
2023-02-18 18:01:49 2.05MB
1
python商品数据分析可视化系统(带爬虫)京东销售数据分析 计算机毕业设计 源码下载 beautifulsoup4==4.11.1 bs4==0.0.1 certifi==2021.5.30 cffi==1.15.0 charset-normalizer==2.0.12 cryptography==37.0.2 cycler==0.11.0 defusedxml==0.7.1 diff-match-patch==20200713 Django==2.2 django-allauth==0.50.0 django-crispy-forms==1.13.0 django-formtools==2.3 django-import-export==2.7.1 django-reversion==4.0.2 et-xmlfile==1.1.0 future==0.18.2 httplib2==0.9.2 idna==3.3 kiwisolver==1.3.1 MarkupPy==1.14 matplotlib==3.3.4 numpy==1.19.5 oauthlib==3.2.0 odfpy
2023-02-18 17:26:31 16.26MB Python Django框架 MySQL数据库 爬虫
1