YOLOv5是一种高效、快速的目标检测框架,尤其适合实时应用。它采用了You Only Look Once (YOLO)架构的最新版本,由Ultralytics团队开发并持续优化。在这个基于Python的示例中,我们将深入理解如何利用YOLOv5进行人脸检测,并添加关键点检测功能,特别是针对宽脸(WideFace)数据集进行训练。 首先,我们需要安装必要的库。`torch`是PyTorch的核心库,用于构建和训练深度学习模型;`torchvision`提供了包括YOLOv5在内的多种预训练模型和数据集处理工具;`numpy`用于处理数组和矩阵;而`opencv-python`则用于图像处理和显示。 YOLOv5模型可以通过`torch.hub.load()`函数加载。在这个例子中,我们使用的是较小的模型版本'yolov5s',它在速度和精度之间取得了较好的平衡。模型加载后,设置为推理模式(`model.eval()`),这意味着模型将不进行反向传播,适合进行预测任务。 人脸检测通过调用模型对输入图像进行预测实现。在`detect_faces`函数中,首先对图像进行预处理,包括转换颜色空间、标准化像素值和调整维度以适应模型输入要求。然后,模型返回的预测结果包含每个检测到的对象的信息,如边界框坐标、类别和置信度。在这里,我们只关注人脸类别(类别为0)。 为了添加关键点检测,定义了`detect_keypoints`函数。该函数接收检测到的人脸区域(边界框内的图像)作为输入,并使用某种关键点检测算法(这部分代码未提供,可以根据实际需求选择,例如MTCNN或Dlib)找到人脸的关键点,如眼睛、鼻子和嘴巴的位置。关键点坐标需要转换回原始图像的坐标系。 最后,`detect_faces`函数返回的人脸和关键点信息可以用于在原始图像上绘制检测结果。这包括边界框和置信度信息,以及关键点的位置,以可视化验证检测效果。 需要注意的是,这个示例假设已经有一个训练好的YOLOv5模型,该模型是在宽脸数据集上进行过训练,以适应宽角度人脸的检测。宽脸数据集的特点是包含大量不同角度和姿态的人脸,使得模型能够更好地处理真实世界中的各种人脸检测场景。 如果要从零开始训练自己的模型,你需要准备标注好的人脸数据集,并使用YOLOv5的训练脚本(`train.py`)进行训练。训练过程中,可能需要调整超参数以优化模型性能,如学习率、批大小、训练轮数等。 总的来说,这个Python示例展示了如何集成YOLOv5进行人脸检测和关键点检测,适用于对实时或近实时应用进行人脸分析的场景。为了提高性能,你可以根据实际需求调整模型大小(如使用'yolov5m'或'yolov5l'),或者自定义训练以适应特定的数据集。同时,关键点检测部分可以替换为更适合任务的算法,以达到更好的效果。
2024-06-23 16:42:18 24KB python
1
博文《python做了一个极简的栅格地图行走机器人,到底能干啥?[第四弹]——解锁路径自动规划功能》我们用python手搓了一个极其简单的行走机器人,建立了机器人速度控制模型,具有: 带UI 雷达测距 键盘控制行走功能, 加速设置 雷达数据的可视化 任意地图尺寸的创建 任意障碍物数量的随机生成 编辑地图功能 自动避障功能 自动路径规划模块 路径自动控制
2024-06-23 14:09:50 61KB python 编程语言
Pandas+python可视化技术对医疗数据进行数据与处理、数据分析、数据可视化
2024-06-22 17:58:40 82.96MB
1
pandas Python数据分析与可视化大作业 + 源代码 + 数据 + 详细文档 所使用第三方库介绍:numpy 、pandas、matplotlib、seaborn、wordcloud、sklearn
2024-06-22 17:54:21 7.77MB python 数据分析 可视化 pandas
1
python期末数据清洗可视化大作业
2024-06-22 13:44:04 14.94MB
1
springboot+echarts做大数据展示 scrapy数据采集 spark数据分析处理 包含java项目,数据采集项目,spark处理代码,数据库文件,数据源文件,项目演示截图等等
2024-06-21 20:25:20 71.21MB 数据采集
1
数据分析 数据预处理 电影总票房 年份分析 时间序列分析 rating metascore 折线图 Python爬虫 beautiful soup jupyter notebook numpy pandas matplotlib 数据分析 数据挖掘
2024-06-21 20:22:53 6.08MB 数据分析 python 可视化 爬虫
1
输入字符串,输出字符串中出现次数最多的字母及其出现次数。如果有多个字母出现次数一样,则按字符从小到大顺序输出字母及其出现次数。
2024-06-21 17:52:59 327B python
1
1 Cplex,数学规划优化程序,方便的与python接口,解决线性规划 (Linear Programming)、二次方程规划 (Quadratic Programming)、二次方程约束规划 (Quadratically Constrained Programming) 和混合整型规划 (Mixed Integer Programming) 问题 2 适配python3.7,3.8 ,3.9,3.10 3 没有变量数目限制和约束个数别的限制,也可处理大规模问题,适合运筹优化方向 4 IBM ILOG CPLEX Optimization Studio 2210 for Win
2024-06-21 15:03:47 711.38MB python cplex
1
很不幸的是,由于疫情的关系,原本线下的AWD改成线上CTF了。这就很难受了,毕竟AWD还是要比CTF难一些的,与人斗现在变成了与主办方斗。 虽然无奈归无奈,但是现在还是得打起精神去面对下一场比赛。这个开始也是线下的,决赛地点在南京,后来是由于疫情的关系也成了线上。 当然,比赛内容还是一如既往的得现学,内容是关于大数据的。 由于我们学校之前并没有开设过相关培训,所以也只能自己琢磨了。 好了,废话先不多说了,正文开始。 一.比赛介绍 大数据总体来说分为三个过程。 第一个过程是搭建hadoop环境。 这个开始我也挺懵的,不过后来看了个教程大概懂了。总的来说,hadoop就是一个集成环境,这个环境里
2024-06-21 00:01:17 917KB python 数据分析
1