包含1000+张数字图片及标签,已划分为训练集、验证集和测试集,可直接用于yolo训练
2024-04-03 13:29:43 14.9MB 目标检测 机器学习 深度学习 数字识别
1
这篇文章给大家带来的是关于SCINet实现时间序列滚动预测功能的讲解,SCINet是样本卷积交换网络的缩写(Sample Convolutional Interchange Network),SCINet号称是比现有的卷积模型和基于Transformer的模型准确率都有提升(我实验了几次效果确实不错)。本篇文章讲解的代码是我个人根据官方的代码总结出来的模型结构并且进行改进增加了滚动预测的功能。模型我用了两个数据集进行测试,一个是某个公司的话务员接线量一个是油温效果都不错,我下面讲解用油温的数据进行案例的讲解SCINet是一个层次化的降采样-卷积-交互TSF框架,有效地对具有复杂时间动态的时间序列进行建模。通过在多个时间分辨率上迭代提取和交换信息,可以学习到具有增强可预测性的有效表示。此外,SCINet的基础构件,SCI-Block,通过将输入数据/特征降采样为两个子序列,然后使用不同的卷积滤波器提取每个子序列的特征。为了补偿降采样过程中的信息损失,每个SCI-Block内部都加入了两种卷积特征之间的交互学习。个人总结:SCINet就是在不同的维度上面对数据进行处理进行特征提取工作,从而
2024-04-02 22:41:20 52.97MB 数据集
1
基于图像DIC方法的应力应变测试数据集
2024-04-01 16:40:34 93.85MB 数据集
1
推荐模型推荐算法天池大数据阿里云智联人岗匹配数据集、测试集、说明字符
2024-04-01 15:11:12 69.59MB 数据集
1
汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目标检测,深度学习,yolov5. 汽车轮胎分类图像数据集,一共包含两类,正常的和缺损的。用于目
2024-04-01 13:40:36 367.32MB 目标检测 深度学习 yolov5
1
机器学习多层感知器实践完整源代码,MLP识别MNIST手写数字数据集(Pytorch)
2024-03-29 16:35:48 22.52MB pytorch 数据集 MNIST 机器学习
1
FJSP的标准测试数据集,内部包含4个子数据集(edata/rdata/sdata/vdata),每个子数据集分别包含66个算例,这些子数据集由JSP标准测试数据集修改而来(ABZ/FT/LA/ORB)。数据来源:Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-shop scheduling problem with multi-purpose machines,” Operations-Research-Spektrum, vol. 15, no. 4, pp. 205–215, 1994. 其中,sdata算例中每个工序只能分配一台机器;edata算例中有少量工序可以分配给多台机器;rdata算例中许多工序都可以分配给多台机器;vdata算例中每个工序都可以分配给多台机器。
2024-03-28 19:36:09 190KB 数据集 柔性作业车间 运筹优化
1
腐烂苹果数据集,用于图像识别,训练模型
2024-03-28 19:04:30 95.17MB 数据集
1
智慧工地数据集3065张反光衣安全帽行人检测数据集含voc和yolo格式两种标签(工地监控多视角多场景抓拍).zip 【实际应用】 智慧工地项目、反光衣穿戴检测、安全帽佩戴检测、人员入侵抓拍告警等 【数据集说明】 数据集一共3065张,标签包含yolo格式(txt)和voc格式(xml),标注工具LabelImg手工标注,标注精准,背景丰富、多视角监控拍摄,多种目标检测算法可直接使用(如YOLO系列、ssd、centernet、pp-yolo、yoloX、PP-picoDet等等)。 真实工地监控摄像头拍摄采集,视角及背景多样化,标注精准无误,实际项目所用,算法拟合很好,质量可靠。由于上传资源大小限制,该资源上传了部分图片数据,完整图片资源中附有百度云下载链接。 【备注】 只分享高质量实际项目数据集,请放心下载,不要与乱七八糟数据比较,所有图片实际工地监控真实拍摄,具有很高的实用价值!使用过程有问题随时沟通。
2024-03-27 17:15:44 585.74MB 数据集