数据挖掘 LSTM 时间序列预测 随机森林 基于LSTM的股票数据分析 数学建模 探究股票各指标的相关性、建立模型 建立LSTM时间序列模型
2022-07-14 20:06:31 1.48MB 数学建模
模型时间集合 使用Modeltime进行时间序列预测的集成算法 一个modeltime扩展,它实现了集成预测方法,包括模型平均,加权平均和堆栈。 安装 安装CRAN版本: install.packages( " modeltime.ensemble " ) 或者,安装开发版本: remotes :: install_github( " business-science/modeltime.ensemble " ) 入门 :了解使用Modeltime进行预测的基础知识。 :了解Modeltime集成模型的预测基础。 在几分钟内使您的第一支乐团 加载以下库。 library( tidymodels ) library( modeltime ) library( modeltime.ensemble ) library( tidyverse ) library( timetk ) 第
2022-07-14 15:30:31 3.96MB time timeseries time-series forecast
1
时间序列特征提取与聚类算法研究.pdf
2022-07-11 19:12:39 2.08MB 文档资料
邓自立——现代时间序列分析及其应用 建模、滤波、去卷、预报和控制
2022-07-11 16:51:12 10.94MB 时间序列分析
1
特色 根据时间序列数据计算各种特征。 R包Python实现。 安装 您可以使用以下tsfeatures从安装tsfeatures的发行版本: pip install tsfeatures 用法 tsfeatures主函数默认情况下计算Montero-Manso,Talagala,Hyndman和Athanasopoulos在。 from tsfeatures import tsfeatures 该函数接收具有unique_id , ds , y列以及可选的数据频率的面板熊猫df。 tsfeatures ( panel , freq = 7 ) 默认情况下( freq=None ),该函数将尝试推断每个时间序列的频率(使用ds列上pandas infer_freq )并根据内置字典FREQS分配一个季节性周期: FREQS = { 'H' : 24 , 'D' : 1 ,
2022-07-11 10:53:11 77KB python errors time-series metrics
1
基于最小误差估计的综合时间序列预测法及其应用.pdf
2022-07-10 18:01:03 153KB 计算机
基于EMD和神经网络的时间序列预测.pdf
2022-07-10 18:00:35 628KB 计算机
Apache MXNet Gluon中的LSTNet实现 该存储库包含本文的实现: ://arxiv.org/abs/1703.07015,基于该存储库中作者的原始PyTorch实现: : 请参考该论文以获取有关网络体系结构的背景知识。 运行脚本 要获取命令行参数列表: python train.py-帮助
1
LSTM 时间序列分析预测 目录 使用LSTM神经网络进行时间序列数据预测分析。 基于Tensorflow框架、Kerase接口开发网络模型。 包含数据清洗,数据特征提取,数据建模,数据预测。
2022-07-09 16:09:14 5.42MB 深度学习 时间序列 LSTM Tensorflow