PSO 最基本的代码已经在这里展示了。 它对刚接触编码的人最有帮助。 它可以用于任何优化问题。 作为一种启发式算法,它倾向于找到全局最小值,并且随着代码被矢量化,速度也得到了提高。 所提供的文件适用于无约束函数,但借助惩罚函数,可以轻松约束问题。 如果它适用于许多用户,我打算为 PSO 开发一个 GUI,并提供受约束的 PSO 文件。 还添加了广泛使用的用于检查 PSO 功能的基准功能。 还添加了改进的 PSO 文件,其中考虑了线性变化的惯性权重值。 如果有帮助,请在评论中告诉我。
2022-08-13 23:35:54 8KB matlab
1
通过GWO 灰狼算法优化支持向量机SVM建立各参数与研究目标的映射模型,代代码比较全,可以直接在MATLLAB里面使用
2022-08-13 20:03:52 4KB GWO SVM 灰狼算法 支持向量机
1
为了对用户的项目进行推荐以进行历史用户评级,正在使用几种智能系统。 最常见的方法是推荐系统。 发挥主要作用的主要领域是社交网络,数字营销,在线购物和电子商务。 推荐系统由几种建议技术组成。 在这里,我们使用了众所周知的协作过滤(CF)方法。 存在两种类型的问题,协作过滤主要解决这些问题。 它们是完全冷启动(CCS)问题和不完全冷启动(ICS)问题。 作者提出了三种新颖的方法,例如协同过滤,人工神经网络以及最后的支持向量机来解决CCS和ICS问题。 基于特定的深度神经网络SADE,我们可以删除产品的特征。 通过使用顺序激活的用户和产品特性,我们可以适应最新技术CF模型,时间SVD ++的冷启动产品额定值。 拟议的系统由Netflix评级数据集组成,该数据集用于执行基线技术来对冷启动项目进行评级预测。 在ICS项上比较了两种推荐技术的计算结果,证明了该方法的适应性。 由于冷启动转移到非冷启动状态,因此所提出的方法能够转移产品。 这里采用人工神经网络(ANN)提取项目内容特征。 用户偏好之一(例如时间动态)用于将满足的特征获取到预测中以克服这些问题。 对于分类过程,与早期方法相比,我们使用了
1
机器学习支持向量机学习文档上
2022-08-11 11:05:33 9.19MB 机器学习
1
机器学习支持向量机学习文档下
2022-08-11 11:05:32 12.94MB 机器学习
1
选取基于日特征气象因素的支持向量机预测方法,用Matlab编制模型的算法程序,从数据集中选取若干天数的历史数据作为模型的训练集,其余的数据作为测试集,模型最终能够实现对测试集中不同日期的负荷大小预测 ,完整程序 附带WORD讲解(MATLAB)
2022-08-11 10:15:06 247KB 支持向量机 matlab 文档资料 算法
通过将粒子群算法也支持向量机结合,使用支持粒子群算法优化支持向量机参数,并训练支持向量机
2022-08-06 20:35:18 1KB PSOSVM
1
引入函数max(),它表示取向量中按模最大的分量,迭代的每一步取( )( )( ),使得最大的分量为 1。Jacobi法是计算实对称矩阵全部特征值和特征向量的一
2022-08-05 18:00:53 421KB 矩阵
1
寻找RGB图像的平均向量
2022-08-05 17:20:48 1KB matlab
1
摘要I第一章 绪论 11.1 研究背景及意义 11.2 国内外研究动态 21.3 论文结构 3第二章 支持向量机理论基础 52.1 引言52.2 统计学习理论
2022-08-04 21:00:31 15.39MB 支持向量机
1