### RTC提交代码步骤详解 #### 一、RTC简介与应用场景 RTC(Rational Team Concert)是一款由IBM开发的协作软件平台,主要用于支持敏捷项目管理、持续交付和版本控制。它提供了一个集成的工作环境,帮助团队成员高效地进行软件开发、测试和部署。RTC通过其强大的功能集,在大型企业和组织中得到了广泛应用。 #### 二、RTC提交代码的基本流程 在深入探讨具体的提交步骤之前,我们先来了解一下RTC中代码提交的一般流程。这通常包括以下几个关键步骤: 1. **获取最新的源代码**:确保本地工作区与远程仓库同步。 2. **进行更改**:根据需求或任务描述修改代码。 3. **添加变更集**:将修改后的文件放入变更集中。 4. **提交变更集**:向远程仓库提交变更集,并附带相应的注释说明。 5. **审查与合并**:提交后,变更可能需要经过代码审查,然后才能被合并到主分支。 #### 三、具体提交步骤详解 接下来,我们将基于给定的部分内容,详细解释如何在RTC中提交代码。 1. **登录RTC界面**: - 打开浏览器,访问RTC的网址:`https://scm.int-bjrcb.com/ccm/`。 - 登录您的账户。如果未注册,请按照页面提示完成注册流程。 2. **准备提交**: - 在RTC界面中,找到您想要提交的代码变更。通常情况下,您需要先在本地环境中完成代码修改,并将其加入到变更集中。 - 确保所有必要的修改都已经完成,并且通过了本地测试。 3. **选择变更集**: - 在变更集列表中,双击颜色较深的变更集条目以选中它。这里提到的“颜色深”,通常是指已经准备好提交的变更集,它们会以更醒目的颜色显示。 - 如果您想要搜索特定的变更集,可以在搜索框中输入关键词(例如“赵鹏程”),以快速定位到相关的变更集。 4. **关联变更集**: - 在选中的变更集上右键点击,选择“浏览”或“查看”选项。 - 在弹出的窗口中,找到与您当前提交相关的变更集,如“赵鹏程”的变更集,然后点击“选择”或“确定”。 5. **填写提交信息**: - 在提交界面上,填写详细的提交信息,包括但不限于提交原因、修改内容等。 - 如果需要,可以添加更多的备注或者附件。 6. **保存并切换用户**: - 完成提交信息的填写后,点击“保存”按钮。 - 根据实际情况,您可能需要切换到其他用户身份进行后续操作。比如示例中的“切换”操作,可能是为了切换到用户“zhaopc”(赵鹏程)的身份继续操作。 7. **输入密码**: - 如果系统提示需要密码验证,则输入该用户的密码。例如,这里提供的密码是“090501”。 8. **最终提交**: - 点击“提交”按钮,完成代码提交过程。 - 如果提交成功,系统通常会给出相应的确认消息。 #### 四、注意事项 - 在提交代码前,请确保所有的修改都已经过充分测试,避免引入新的bug。 - 提交信息应尽可能详细,便于其他团队成员理解您的改动意图。 - 如果变更涉及到多个文件或模块,建议将它们归类到同一个变更集中,以简化审查流程。 - 在大型项目中,建议使用代码审查机制,以提高代码质量。 通过以上步骤,您可以顺利完成RTC中的代码提交过程。对于初次接触RTC的开发者来说,熟悉这些基本操作是非常重要的。希望本篇文章能帮助您更好地理解和掌握RTC的使用方法。
2024-08-16 13:29:20 151KB
1
### Matlab:DY溢出指数代码及原数据解析 #### VAR模型概述 本文旨在介绍如何使用MATLAB实现一种简化形式的向量自回归模型(Vector Autoregression, VAR),并基于此模型计算动态溢出指数(DY Spillover Index)。VAR模型是一种广泛应用于经济和金融时间序列分析中的统计工具,它允许我们研究多个时间序列之间相互作用的方式。 ### 简化形式的VAR模型 简化形式的VAR模型可以表示为: \[ y_t = \nu + A_1 y_{t-1} + A_2 y_{t-2} + \ldots + A_p y_{t-p} + u_t \] 其中: - \( y_t \) 是 \( k \) 维的内生变量向量。 - \( A_i \) 是 \( k \times k \) 的系数矩阵。 - \( u_t \) 是误差项。 该模型可以通过等价的形式转化为VAR(1)模型: \[ Y_t = v + A Y_{t-1} + U_t \] 其中: - \( Y_t = \begin{bmatrix} y_t \\ y_{t-1} \\ \vdots \\ y_{t-p+1} \end{bmatrix} \) - \( A = \begin{bmatrix} A_1 & A_2 & \ldots & A_{p-1} & A_p \\ I_k & 0 & \ldots & 0 & 0 \\ 0 & I_k & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & I_k & 0 \end{bmatrix} \) ### 移动平均表示法 如果假设VAR(p)过程是稳定的,则其移动平均表示可通过连续替换得到。具体来说,\( Y_t \) 可以表示为: \[ Y_t = A(L)^{-1} \nu + A(L)^{-1} U_t = A(L)^{-1} \nu + \sum_{i=1}^{\infty} \Phi_i U_{t-i} \] 其中: - \( A(L)^{-1} = \sum_{i=0}^{\infty} \Phi_i L^i \) - \( \Phi_i = J A_i J' \),其中 \( J = [I_k, 0_{k \times k(p-1)}] \) - \( \Phi_0 = I_k \),且对于 \( i > 0 \),有 \( \Phi_i = \sum_{j=1}^{i} \Phi_{i-j} A_j \) ### 预测误差方差分解(FEVD) 预测误差方差分解(FEVD)是用来分析每个外生冲击对预测误差方差的贡献程度的方法。对于水平 \( h \) 处的预测误差 \( y_{k,t+h} - y_{k,t(h)} \): \[ y_{k,t+h} - y_{k,t(h)} = \sum_{i=1}^{\infty} \Phi_i u_{t+h-i} \] 其中 \( \Sigma_u = E(u_t u_t') \) 是误差项的协方差矩阵。如果 \( \Sigma_u = P \Sigma_w P' \),其中 \( \Sigma_w = I_K \),则 \( \Theta_i = \Phi_i P \)。 ### DY溢出指数 Diebold 和 Yilmaz (2009) 提出了溢出指数来衡量跨企业、市场或国家的溢出效应。溢出指数定义为: \[ \text{Spillover Index} = \frac{\sum_{k,j \in \{1..K\}, k \neq j} \text{FEVD}_{kj}(h)}{\sum_{k,j \in \{1..K\}} \text{FEVD}_{kj}(h)} \] 其中,\( \text{FEVD}_{kj}(h) \) 表示第 \( j \) 个冲击对第 \( k \) 个变量在水平 \( h \) 上预测误差方差的贡献。通过构造迪伯德-伊尔马兹连通性表(FEVD 表),可以直观地理解这些贡献。 ### 方向性连接 在迪堡和伊尔马兹的工作中还提出了方向性连接的概念,用于衡量不同实体之间的信息流动方向。例如,从其他国家到国家 \( i \) 的总方向性联系 \( C_i \leftarrow \ast \) 定义为: \[ C_i \leftarrow \ast = \sum_{j=1, j \neq i}^N dH_{ij} \] 同时,与其他国家的完全定向联系 \( C_\ast \leftarrow j \) 定义为: \[ C_\ast \leftarrow j = \sum_{i=1, i \neq j}^N dH_{ij} \] ### 广义VAR框架下的FEVD 在广义VAR方法中,FEVD 在视界 \( h = H \) 处的计算如下: \[ dH_{kj} = \sigma_j^{-1} \sum_{h=0}^{H-1} e_k' \Phi_h \Sigma_u e_j^2 / \sum_{h=0}^{H-1} e_k' \Phi_h \Sigma_u e_k e_k \] 其中 \( e_k \) 是 \( I_K \) 的第 \( k \) 列。然而,这种广义FEVD不保证行和或列和为1,因此,迪堡和伊尔马兹 (2012) 建议进行归一化处理。 ### 总结 本文介绍了如何在MATLAB中实现一种简化形式的VAR模型,并基于此模型计算动态溢出指数(DY Spillover Index)。通过上述介绍,我们可以了解到VAR模型在经济和金融领域的应用,以及如何利用MATLAB工具包进行数据分析。DY溢出指数能够帮助我们更好地理解和量化不同实体之间的相互作用和信息流动。此外,文中还讨论了不同的FEVD计算方法,包括传统的乔莱斯基分解和广义VAR框架下的FEVD计算方法,这为我们提供了更多的选择和灵活性。 VAR模型及其扩展在现代经济和金融分析中扮演着重要的角色。通过MATLAB实现这些模型可以帮助研究人员深入理解数据背后的模式和关系。
2024-08-16 11:49:40 22KB matlab
1
Excel·VBA考勤打卡记录统计出勤小时(附件)
2024-08-16 09:46:10 311KB 代码附件
1
ESP32是一款强大的微控制器,集成了Wi-Fi和蓝牙功能,广泛应用于物联网(IoT)项目。IDF,全称Espressif System's Programming Framework,是ESP32的官方开发框架,提供了一套完整的开发环境,包括编译、烧录、调试等工具,帮助开发者高效地构建基于ESP32的应用程序。 本实战代码库涵盖了从基础到进阶的多个ESP32 IDF编程知识点,旨在帮助初学者快速掌握ESP32的开发技巧。以下是一些关键的知识点: 1. **环境搭建**:你需要安装ESP-IDF开发环境,这包括安装Git、Python、CMake、 Ninja等工具,以及配置ESP-IDF的依赖库。此外,还需要设置好ESP-IDF的路径和Python环境变量。 2. **工程结构**:了解IDF项目的标准目录结构,如`main`目录存放主函数和业务逻辑,`include`存放头文件,`src`存放源代码,`app`目录下有`makefile`或`CMakeLists.txt`进行项目配置。 3. **组件和驱动**:ESP32 IDF提供了丰富的硬件抽象层(HAL)和驱动组件,如TCP/IP协议栈、Wi-Fi管理、蓝牙BLE、GPIO、ADC、DAC、PWM等。学习如何配置和使用这些组件,是ESP32开发的基础。 4. **Wi-Fi与蓝牙连接**:通过IDF,可以实现ESP32作为Wi-Fi客户端或AP,进行数据传输。同时,它还支持BLE(Bluetooth Low Energy)连接,用于低功耗设备通信。 5. **任务调度与事件循环**:ESP-IDF采用FreeRTOS操作系统,学习如何创建和管理任务,理解任务优先级和同步机制,以及如何使用事件循环(event loop)处理异步事件。 6. **内存管理**:了解ESP32的内存布局,如IRAM、DROM、DRAM等,以及如何有效地分配和释放内存。 7. **OTA固件更新**:远程Over-the-Air (OTA)更新是物联网设备必备的功能。学习如何在IDF中实现OTA,确保固件安全、可靠地升级。 8. **传感器和外设接口**:学习如何与各种传感器(如温湿度传感器、光线传感器)和外设(如LCD屏幕、电机)进行交互,获取数据并处理。 9. **安全与加密**:ESP32支持多种安全特性,如AES加密、RSA签名等,理解这些安全机制并在项目中应用是必要的。 10. **调试技巧**:学会使用idf.py命令行工具进行编译、下载、调试,以及使用GDB进行远程调试,分析程序运行状态和查找问题。 11. **性能优化**:了解如何通过调整堆栈大小、优化算法、减少内存分配等方式提升程序性能。 12. **能耗管理**:对于电池供电的设备,了解如何进行电源管理,如休眠模式、唤醒机制等,以延长电池寿命。 13. **日志系统**:学习如何使用ESP-IDF的日志系统进行调试输出,以及如何配置日志级别和输出方式。 通过这个实战代码库,你可以一步步实践这些知识点,从简单的LED控制到复杂的网络通信,逐步成长为ESP32 IDF的大师。在每个章节,都会有详细的代码注释和步骤说明,帮助你理解和消化每个知识点。不断实践和积累经验,你将能够应对各种基于ESP32的IoT项目挑战。
2024-08-16 09:17:51 531KB
1
《代码随想录知识星球精华(第四版)最强八股文-Java篇》是一份针对Java编程语言的深度学习资源,包含超过55MB的丰富内容,旨在为开发者提供全面而深入的Java知识体系。这份资料是Java学习者不可多得的宝藏,尤其适合那些希望巩固基础、提升技能或者准备面试的程序员。 Java作为一种广泛应用的面向对象的编程语言,其核心知识点包括但不限于以下几个方面: 1. **基础语法**:包括变量、数据类型、运算符、流程控制(如if语句、switch语句、for循环和while循环)、方法定义与调用、数组以及字符串处理。这些是编写任何Java程序的基础。 2. **类与对象**:Java是面向对象的语言,所以理解和掌握类、对象、封装、继承、多态等概念至关重要。理解如何定义类,创建对象,以及如何通过继承和多态来实现代码的复用和扩展。 3. **异常处理**:Java中的异常处理机制允许程序员优雅地处理运行时错误。理解try-catch-finally结构以及不同类型的异常类是必要的。 4. **集合框架**:Java集合框架提供了丰富的数据结构和算法,如ArrayList、LinkedList、HashSet、HashMap等。理解它们的工作原理和应用场景,能提高代码效率。 5. **输入/输出流**:I/O流用于处理数据的读写,包括文件操作、网络通信等。理解流的概念,以及不同类型的流(如字节流和字符流)的区别。 6. **多线程**:Java提供强大的多线程支持,包括线程的创建、同步、互斥和通信。熟悉线程的生命周期、并发模式以及线程安全问题的解决策略。 7. **反射机制**:Java反射允许在运行时检查类、接口、字段和方法的信息,甚至动态调用方法。它是许多高级框架如Spring的核心技术之一。 8. **垃圾回收与内存管理**:Java的自动内存管理机制,包括垃圾回收和内存泄漏检测,是理解Java性能优化的关键。 9. **Java标准库**:掌握常用的Java API,如IO、NIO、网络编程、日期时间API、集合框架等,可以提升开发效率。 10. **JVM原理**:理解Java虚拟机的工作原理,包括类加载机制、内存模型、垃圾收集策略等,对于优化代码性能和排查问题非常有帮助。 11. **设计模式**:学习并掌握常见的设计模式(如单例、工厂、观察者等)可以提高代码的可读性和可维护性。 12. **框架应用**:了解和使用流行的Java框架,如Spring Boot、MyBatis等,能够快速构建企业级应用。 13. **单元测试**:学习JUnit和其他测试工具,进行有效的单元测试,确保代码质量。 14. **Java 8及更高版本的新特性**:如Lambda表达式、Stream API、Optional类等,都是现代Java开发中的重要组成部分。 这份55M的PDF文档,无疑是学习和复习Java知识的绝佳材料。它将涵盖以上所有关键点,深入浅出地讲解,配以实例和习题,帮助读者巩固知识,提升编程能力。无论是初学者还是有经验的开发者,都能从中获益匪浅,为个人的Java编程之路打下坚实的基础。
2024-08-15 16:03:10 53.88MB java
1
《雷达系统分析与设计使用MATLAB 3rd Edition》是一本深入探讨雷达系统设计与分析的专业书籍,其配套代码提供了实践操作的平台,使理论知识得以直观化和具体化。MATLAB作为强大的数学计算和仿真工具,对于理解和实现雷达系统的各种算法至关重要。 雷达系统的基础在于信号处理,包括信号的生成、发射、接收以及信号处理。MATLAB代码可能涵盖了脉冲压缩、匹配滤波、多普勒处理等关键技术。脉冲压缩技术通过线性调频信号生成宽脉冲,提高距离分辨率;匹配滤波则利用已知信号形状最大化信噪比,提高目标检测性能;多普勒处理则用于分析目标的相对运动,提供速度信息。 雷达目标探测和识别是另一个重点。在MATLAB代码中,可能包含自适应阈值检测、恒虚警率(CFAR)检测等算法。自适应阈值检测根据背景噪声动态设定检测阈值,避免假警报;CFAR技术则确保在不同背景噪声下保持恒定的虚警概率,提高目标检测的可靠性。 再者,雷达系统设计还涉及目标参数估计,如距离、角度和速度的估计。MATLAB代码可能涉及到最小二乘法、最大似然估计等方法,这些方法用于从接收到的回波信号中提取目标参数,提高估计精度。 此外,波形设计也是雷达系统的重要部分。例如,线性调频连续波(LFM)、频率捷变(FM)等雷达波形可能在代码中有所体现,这些波形具有优良的特性,如距离分辨率高、多普勒处理能力强等。 MATLAB代码可能还包括了雷达信号的仿真,模拟真实雷达系统的工作流程,包括发射信号的建模、传播环境的模拟、接收信号的处理等。这有助于读者理解雷达系统在不同条件下的表现,并为优化系统设计提供依据。 在学习这本书时,配合MATLAB代码进行实践,不仅可以加深对理论的理解,还能提高解决实际问题的能力。通过调试代码,可以直观地看到算法的运行效果,这对于理论学习和工程应用都是非常有价值的。因此,这本书的配套代码无疑是学习雷达系统分析与设计的宝贵资源。
2024-08-15 15:46:06 712KB 配套代码
1
利用matlab生成dsp运行代码使用Stanley控制器进行车辆路径跟踪 提交的内容包含一个模型,该模型显示了Stanley控制器在美国高速公路场景中行驶的车辆上的实现方式。 以下步骤描述了工作流程: 生成航点 平滑车辆参考位置和方向 生成速度曲线 实施斯坦利控制器 在2D,Bird's-Eye Scope和3D仿真环境中可视化车辆的最终路径。 用户可以参考此模型来执行给定路点的路径跟踪应用程序。 可以在比较获得的轨迹和参考轨迹的2D图中可视化结果。 模型 stanleyHighway.slx 该模型实现了一个Stanley控制器来驱动车辆通过US Highway场景。 支持的文件和文件夹(在运行模型之前,请确保所有这些文件都在当前文件夹中) 图片 该文件夹包含用于掩盖模型中某些块的图像 setUpModel.m 该文件初始化运行模型所需的参数 USHighway.mat 该文件包含美国高速公路场景的数据 velocityProfile.mlx 实时脚本基于梯形轮廓生成速度轮廓 产品要求 这些模型是在MATLAB R2020b版本中开发的,并使用以下MathWorks产品: 自动驾驶
2024-08-15 14:26:07 2.79MB 系统开源
1
《人工智能数学基础资源》是由唐宇迪编著的,涵盖了人工智能学习中不可或缺的数学基础知识,包括习题答案和源代码,旨在帮助读者深入理解和应用这些数学概念。这个资源包是学习人工智能的重要参考资料,特别是对于那些希望在AI领域深造的学生和从业者。 1. **线性代数**:线性代数是人工智能的基础,特别是在处理多维数据时。它包括向量、矩阵、行列式、特征值、特征向量、逆矩阵、秩、线性空间和线性变换等概念。在机器学习中,线性代数用于构建模型,如神经网络的权重矩阵、PCA降维、SVD分解等。 2. **概率论与统计**:概率论提供了处理不确定性和随机性事件的理论框架,而统计学则用于从数据中提取信息。主要知识点包括概率分布(伯努利、正态、泊松等)、条件概率、贝叶斯定理、大数定律和中心极限定理。在机器学习中,概率模型如高斯混合模型和马尔可夫模型广泛使用,统计推断用于参数估计和假设检验。 3. **微积分**:微积分是理解函数变化和优化问题的关键。在深度学习中,梯度下降法就是基于微积分中的导数概念,用于找到损失函数的最小值。此外,多元微积分涉及偏导数、梯度、方向导数和泰勒公式,对于理解和构建复杂的非线性模型至关重要。 4. **最优化理论**:优化是人工智能的核心,涉及寻找函数的极值点。常见的优化算法有梯度下降、牛顿法、拟牛顿法(如BFGS和L-BFGS)以及随机梯度下降等。这些方法在训练神经网络时调整权重和偏置,以最小化预测误差。 5. **图论与组合优化**:图论在机器学习中用于处理关系网络,如社交网络分析、推荐系统等。组合优化问题如旅行商问题、最小生成树等,被应用于路径规划和资源分配。 6. **离散数学**:离散数学包括集合论、逻辑、图论、组合数学等内容,为计算机科学提供基础。在人工智能中,离散结构如二叉树、图和图算法(如Dijkstra算法、Floyd-Warshall算法)用于解决搜索问题和决策问题。 7. **动态规划**:动态规划是一种求解最优化问题的有效方法,常用于序列建模和规划问题。在自然语言处理和图像识别等领域,动态规划算法如Viterbi算法和K-means聚类等被广泛应用。 8. **源代码**:资源包中的源代码可能是对以上数学概念的实际实现,可以帮助读者更好地理解理论知识,并将其转化为实际解决问题的能力。通过阅读和实践代码,可以提升编程技能,加深对人工智能算法的理解。 这个资源包为学习者提供了一个全面的平台,不仅可以学习理论知识,还可以通过解答习题和查看源代码进行实践,从而在人工智能的道路上更进一步。
2024-08-14 17:00:58 6.41MB 人工智能
1
支付宝或者微信支付导出的收款二维码,除了二维码部分,还有很大一块背景图案,例如下面就是微信支付的收款二维码: 有时候我们仅仅只想要图片中间的方形二维码部分,为了提取出中间部分,我们可以使用图片处理软件,但图片处理软件不利于批处理,且学习也需要一定成本。本文将教你使用 Python 的图像处理库 pillow,轻松批量提取图片中间的方形二维码部分。 提取思路 以微信支付收款码图片为例: 分析图片我们可以看到,二维码位于白色背景中,而白色背景又位于绿色背景上。我们以图片左上角为坐标原点,横向为 x 轴(向右为正方向),纵向为 y 轴(向下为正方向)。我们的目标是需要确定白色背景部分 4 个角的坐
2024-08-14 14:56:51 67KB python 二维码
1
Git工具安装包-Git-2.44.0-64-bit.zip 分布式代码仓库版本工具安装包 Git工具exe可视化界面安装包下载
2024-08-14 10:49:43 61.85MB 分布式
1