基于 TensorFlow、Keras 和 scikit-learn,介绍了 21 个典型的人工智能应用场景。 这些应用场景被分类为预测类项目实战、识别类项目实战和生成类项目实战。 其中预测类项目包括房价预测、泰坦尼克号生还预测、共享单车使用情况预测、福彩 3D 中奖预测、股票走势预测等 8 个项目; 识别类项目包括数字识别、人脸识别、表情识别、人体姿态识别等 7 个项目; 生成类项目包括看图写话、生成电视剧剧本、风格迁移、生成人脸等 6 个项目; 适合新手下载。
2023-09-21 17:17:07 71.57MB tensorflow 深度学习 人工智能 keras
1
python yolov5 训练数据集 无人机航拍数据集合 人工智能 深度学习 目标检测 目标识别
2023-09-20 16:32:25 726.65MB 人工智能 python 数据集 深度学习
1
机器学习/深度学习必备,income数据集
2023-09-17 14:42:26 727B 机器学习 深度学习 数据集
1
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的 目录: 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络
2023-09-14 14:21:54 2.55MB 人工智能 深度学习
1
分享课程——YOLOv8自定义对象检测、实例分割、目标跟踪从训练到部署,2023新课,提供源码+课件+数据。 详解YOLOv8模型结构从backbone、neck、header、loss层面详解YOLOv8相比YOLOX、YOLOv5、YOLOv6的全面改进与创新。完成YOLOv8自定义数据的对象检测,实例分割、自定义对象跟踪,YOLOv8在主流推理平台上部署包括 OpenVINO、ONNXRUNTIME、TensorRT推理代码详解与演示。打通从模型结构理论到工程实践训练部署整个流程。彻底玩转YOLOv8。
2023-09-12 14:09:47 811B 目标跟踪 yolo 深度学习
1
【超实用课程内容】 本课程从pytorch安装开始讲起,从基本计算结构到深度学习各大神经网络,全程案例代码实战,一步步带大家入门如何使用深度学习框架pytorch,玩转pytorch模型训练等所有知识点。最后通过 kaggle 项目:猫狗分类,实战pytorch深度学习工具。 【课程如何观看?】 PC端:https://edu.csdn.net/course/detail/27286 移动端:CSDN 学院APP(注意不是CSDN APP哦) 本课程为录播课,课程永久观看,大家可以抓紧时间学习后一起讨论哦~ 【学员专享增值服务】 源码开放 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 下载方式:电脑登录https://edu.csdn.net/course/detail/27286,点击右下方课程资料、代码、课件等打包下载
1
yolov5头部训练模型
2023-08-25 12:49:36 12.53MB 深度学习 python 后端 Yolov5
1
500条WAV格式的中文语音数据集,可用于中文语音识别模型的测试集,好的一批
2023-08-14 10:02:25 45.69MB python 数据集 nlp 深度学习
1
方栗子 发自 凹非寺 量子位 出品 | 公众号 QbitAI 清明假期过去,又可以开始学习了。耶。 正好,吴恩达老师在斯坦福讲的深度学习课CS230,春季4月2日刚刚开课,全套PPT已上线。跟着,秋季10节课的视频也全部出锅了 (B站有搬运) 。 另外,有斯坦福助教小哥哥出品的CS230优质小抄,可以搭配食用,有助消化。 还有一学期两次考试的卷子和答案,适当的时候,检查一下自己到底有没有在学习。 所以,先仔细观察一下课程的内容吧: 五个疗程 课程为期两个月。开学的设定还是入门的小朋友,期末已经成为能做各种应用项目的强者了。 10节课分为五个疗程,大约两节课一疗程。课程吴恩达老师和Kian
2023-08-05 11:41:11 897KB 吴恩达 学习 开学
1
原资源可在github中搜索到,这里只是用于个人学习方便。 课程内容 第1讲 知识图谱概论 (2019-3-1,2019-3-8) 1.1 知识图谱起源和发展 1.2 知识图谱 VS 深度学习 1.3 知识图谱 VS 关系数据库 VS 传统专家库 1.4 知识图谱本质和核心价值 1.5 知识图谱技术体系 1.6 典型知识图谱 1.7 知识图谱应用场景 第2讲 知识表示 (2019-3-15) 2.1 知识表示概念 2.2 知识表示方法 语义网络 产生式系统 框架系统 概念图 形式化概念分析 描述逻辑 本体 本体语言 统计表示学习 第3讲 知识建模 (2019-3-15,2019-3-22) 3.1 本体 3.2 知识建模方法 本体工程 本体学习 知识建模工具 知识建模实践 第4讲 知识抽取基础:问题和方法(2019-3-22) 4.1 知识抽取场景 4.2 知识抽取挑战 4.3 面向结构化数据的知识抽取 4.4 面向半结构化数据的知识抽取 4.5 面向非机构化数据的知识抽取 第5讲 知识抽取:数据采集(2019-3-29) 5.1 数据采集原理和技术 爬虫原理 请求和响应 多线程并行爬取 反爬机制应对 5.2 数据采集实践 百科 论坛 社交网络等爬取实践 第6讲 知识抽取:实体识别(2019-3-29) 6.1 实体识别基本概念 6.2 基于规则和词典的实体识别方法 6.3 基于机器学习的实体识别方法 6.4 基于深度学习的实体识别方法 6.5 基于半监督学习的实体识别方法 6.6 基于迁移学习的实体识别方法 6.7 基于预训练的实体识别方法 第7讲 知识抽取:关系抽取(2019-4-19,2019-4-26) 7.1 关系基本概念 7.2 语义关系 7.3 关系抽取的特征 7.4 关系抽取数据集 7.5 基于监督学习的关系抽取方法 7.6 基于无监督学习的关系抽取方法 7.7 基于远程监督的关系抽取方法 7.8 基于深度学习/强化学习的关系抽取方法 第8讲 知识抽取:事件抽取(2019-3-29) 8.1 事件抽取基本概念 8.2 基于规则和模板的事件抽取方法 8.3 基于机器学习的事件抽取方法 8.4 基于深度学习的事件抽取方法 8.5 基于知识库的事件抽取方法 8.6 基于强化学习的事件抽取方法 第9讲 知识融合(2019-4-28) 9.1 知识异构 9.2 本体匹配 9.3 匹配抽取和匹配调谐 9.4 实体匹配 9.5 大规模实体匹配处理 9.6 知识融合应用实例 第10讲 知识图谱表示学习(2019-5-5) 10.1 知识表示学习概念 10.2 基于距离的表示学习模型 10.3 基于翻译的表示学习模型 10.4 基于语义的表示学习模型 10.5 融合多源信息的表示学习模型 10.6 知识图谱表示学习模型的评测 10.7 知识图谱表示学习前沿进展和挑战 第11讲 知识存储(2019-5-10) 11.1 知识存储概念 11.2 图数据库管理系统、模型、查询语言 11.3 RDF数据库管理系统、模型、查询语言 11.4 基于关系型数据库的知识存储 第12讲 基于知识的智能问答(2019-5-10) 12.1 智能问答基础 12.2 问题理解 12.3 问题求解 12.4 基于模板的知识问答方法 12.5 基于语义分析的知识问答方法 12.6 基于深度学习的知识问答方法 12.7 IBM Watson原理和技术剖析 12.8 微软小冰的原理和技术剖析 第13讲 实体链接(2019-5-17) 13.1 实体链接基本概念 13.2 基于概率生成模型的实体链接方法 13.3 基于主题模型的实体链接方法 13.4 基于图的实体链接方法 13.5 基于深度学习的实体链接方法 13.6 基于无监督的实体链接方法 第14讲 知识推理(2019-5-17) 14.1 知识推理基础概念 14.2 基于逻辑的知识推理方法 14.3 基于统计学习的知识推理方法 14.4 基于图的知识推理方法 14.4 基于神经网络的知识推理方法 14.5 多种方法混合的知识推理方法
1