在当前的技术领域中,人工智能的发展已经渗透到多个行业和应用场景之中,其中一个重要的应用就是基于深度学习的安全帽检测系统。安全帽检测系统的作用是在施工现场、建筑行业等领域通过自动检测工作人员是否佩戴安全帽,从而降低工作环境中的安全风险。本项目基于YOLOv5模型,利用openvino作为推理框架进行高效运行,并使用pyqt5开发了一个用户友好的界面。 YOLOv5是一种流行的目标检测算法,它能够快速准确地识别出图片中的物体。YOLOv5算法以其速度快、检测准确而受到业界青睐,它适用于实时目标检测,并且在各种硬件设备上都能够实现较好的性能。在本项目中,YOLOv5被用作安全帽检测的核心技术,负责从监控视频或图片中识别出佩戴安全帽的人员。 OpenVINO(Open Visual Inference & Neural Network Optimization)是由英特尔开发的一个推理引擎,它能够加速深度学习模型的部署和运行,尤其是在边缘计算设备上。OpenVINO支持多种深度学习框架,能够将训练好的模型转换成可优化的格式,并在不同的硬件平台上执行。通过使用OpenVINO作为推理框架,YOLOv5模型的运行效率得到了进一步的提升,尤其适合于对实时性和资源占用有严格要求的安全帽检测系统。 PyQt5是一个用于开发跨平台应用程序的框架,它结合了Qt库和Python语言的特点。PyQt5支持创建丰富的图形用户界面(GUI),并且能够兼容各种操作系统。在本项目中,PyQt5被用来开发一个直观易用的操作界面,使用户能够方便地管理安全帽检测系统,如加载视频、显示检测结果、调整参数等。 项目文件名称列表中的“tflite-demos-master”可能指向了使用TensorFlow Lite进行部署的示例应用程序或演示项目。TensorFlow Lite是谷歌开发的一个轻量级解决方案,专门用于移动和嵌入式设备上的机器学习应用。这可能意味着项目开发者在实际部署阶段考虑了多种选择,并在不同的平台上进行了测试。 本项目结合了YOLOv5的高效目标检测能力、OpenVINO在边缘计算设备上的优秀性能以及PyQt5开发的便捷用户界面,旨在创建一个能够实时检测人员是否佩戴安全帽的系统,以提高施工现场等高风险环境的安全管理水平。此外,考虑到不同设备的部署需求,项目还可能涉及了TensorFlow Lite的使用,从而提供了更多灵活性和适应性。
2025-10-09 22:06:25 953KB
1
在当前全球新冠疫情期间,口罩已成为人们日常生活中不可或缺的防护用品。为了保证公共场所的安全,开发出能够实时监测人们是否正确佩戴口罩的系统显得尤为重要。基于YOLOv5、PyTorch和PyQt5的口罩穿戴检测系统,便是一个这样的创新应用。 YOLOv5(You Only Look Once version 5)是一种先进的实时目标检测算法,属于YOLO系列中最新的一代。该算法因其高速度和高准确性,在各种计算机视觉任务中得到了广泛的应用。YOLOv5采用深度学习技术,能够快速准确地识别图像中的物体,并给出这些物体的位置和类别信息。 PyTorch是由Facebook开发的开源机器学习库,它被广泛应用于计算机视觉和自然语言处理等研究领域。PyTorch以其动态计算图和灵活性而受到研究人员的喜爱。它能够轻松地定义复杂的神经网络结构,并且易于调试,这使得PyTorch成为进行深度学习研究和开发的理想选择。 PyQt5是一个用于创建GUI应用程序的工具集,它是Qt库的Python绑定。Qt是一个跨平台的应用程序和用户界面框架,被广泛用于开发桌面应用程序。PyQt5提供了丰富的控件和工具,可以用来创建美观、功能丰富且响应迅速的桌面应用程序界面。 本项目结合了上述三种技术,旨在创建一个口罩穿戴检测系统。该系统可以实时分析监控摄像头捕获的视频流,通过YOLOv5模型识别画面中的人脸,并判断他们是否佩戴了口罩。识别结果会通过PyQt5创建的图形界面展示给用户,这样管理人员可以快速地了解到公共区域中人们的口罩佩戴情况,从而采取相应的措施确保安全。 整个系统分为几个关键组件:首先是数据采集组件,负责从摄像头或其他视频源获取视频流;其次是预处理组件,它将视频流中的每一帧图像进行处理,以适应YOLOv5模型的输入要求;接着是检测组件,使用YOLOv5模型对处理后的图像进行目标检测,确定图像中是否存在人脸以及是否佩戴口罩;最后是界面展示组件,利用PyQt5将检测结果显示在一个用户友好的界面中,使得监控人员可以一目了然地看到实时的检测结果。 系统的开发过程涉及到多个技术层面,首先需要对YOLOv5进行训练,以使其能够准确识别戴口罩和未戴口罩的人脸。训练过程中需要收集大量的带标注的数据集,其中包含了各种场景下戴口罩和未戴口罩的人脸图像。这些数据需要经过清洗、增强等预处理步骤,以提高模型训练的效果。 在PyTorch框架下完成模型训练后,接下来的工作是将训练好的模型部署到实时检测系统中。这需要编写相应的程序代码,使其能够读取视频流,对每一帧进行处理,并使用训练好的模型进行预测。预测结果需要被格式化并传递给PyQt5界面展示组件。 PyQt5界面展示组件需要设计简洁直观的界面,显示实时的视频流以及检测结果。界面中可能包含视频显示窗口、状态栏、以及必要的控制按钮。这样设计的目的是使得监控人员可以便捷地获取和理解实时检测信息。 一个基于YOLOv5、PyTorch和PyQt5的口罩穿戴检测系统不仅需要深度学习和计算机视觉方面的专业知识,还需要具备良好的用户界面设计能力。通过这种技术组合,可以有效地帮助公共场所管理人员实时监控口罩佩戴情况,为疫情防控提供强有力的技术支持。
2025-10-09 22:05:57 393KB
1
标题和描述中提到的"2021广东工业智造创新大赛-智能算法赛-瓷砖瑕疵检测YOLOV5-pyqt"是一个聚焦于工业领域的竞赛,重点在于利用人工智能技术进行瓷砖瑕疵检测。在这个项目中,参赛者需要使用YOLOV5(You Only Look Once Version 5)深度学习框架,结合Python的PyQT库来实现这一目标。YOLOV5是一种快速且准确的目标检测算法,而PyQT则是一个用于创建图形用户界面的工具,使得用户可以直观地查看和交互检测结果。 标签"pyqt"、"计算机视觉"和"yolo"揭示了项目的核心技术栈。PyQT是Python中的一个模块,用于构建桌面应用程序,它提供了一套完整的GUI工具包,包括窗口、按钮、文本框等组件,使开发者能够构建出功能丰富的应用。计算机视觉(CV)是AI的一个分支,关注如何让机器“看”和理解图像。YOLO(You Only Look Once)是计算机视觉领域中广泛使用的实时目标检测系统,尤其是YOLOV5作为最新版本,在速度和精度上都有显著提升。 在提供的压缩包文件中,我们可以看到以下几个关键文件: 1. `run.ipynb`:这是一个Jupyter Notebook文件,通常用于数据处理、模型训练和结果展示。开发者可能在这里编写了代码,用于加载数据、预处理、训练模型以及展示检测结果。 2. `export.py`:这个文件可能是用于将训练好的模型导出为可部署的形式,便于在实际应用中使用。 3. `main.py`:这通常是主程序文件,负责整个应用的流程控制,包括启动GUI、调用检测函数、显示结果等。 4. `dect.py`:这个可能是检测模块,实现了使用YOLOV5模型进行瓷砖瑕疵检测的逻辑。 5. `requirements.txt`:列出项目运行所需的所有Python包及其版本,确保在不同环境中能正确安装依赖。 6. `yolov5l.yaml`:这是YOLOV5模型的配置文件,定义了网络结构和超参数。 7. `imageSets.yaml`:可能包含了训练和测试图像的设置,比如图像路径、类别信息等。 8. `weights` 文件夹:可能包含了预训练模型的权重文件或者训练过程中保存的模型。 9. `data` 文件夹:通常存储原始图像数据和相关的数据集元数据。 10. `utils` 文件夹:可能包含了一些辅助工具或自定义的函数,如数据处理、模型加载等。 通过这个项目,开发者可以学习到如何利用PyQT构建GUI应用,如何使用YOLOV5进行目标检测,以及如何将这些技术整合到实际工业场景中。同时,项目还涵盖了数据处理、模型训练、模型优化和部署等多个环节,对于提升计算机视觉和深度学习的实践能力具有很高的价值。
2025-10-07 22:40:09 94.46MB pyqt 计算机视觉 yolo
1
基于yolov5的水表读数系统源码+训练好的模型+数据集+演示视频+训练说明:实现自动读取水表数值的系统。YOLOv5是一种实时目标检测算法,以其快速、准确而闻名,尤其适合在诸如水表读数这样需要快速识别和精确测量的应用场景中。 备注: 该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用 在当今智能化和自动化迅速发展的时代,对各种物体的识别和信息的自动提取提出了越来越高的要求。水表作为日常生活中的重要设施,其读数自动化对于减少人力成本、提高数据准确性、实现远程抄表等具有重要意义。而YOLOv5作为深度学习领域内一种先进的实时目标检测算法,其出色的性能让它在水表读数自动化这一特定场景中展现出了巨大的潜力。 YOLOv5的全称是“Yet Another Object Detection Version 5”,它在YOLO系列算法的基础上进行了大量的改进和优化。YOLO(You Only Look Once)算法的核心思想是将目标检测任务转换为一个单阶段的回归问题,通过统一的网络直接从图像中预测边界框和类别概率。这一算法相比于其他两阶段的目标检测算法,如R-CNN系列和Faster R-CNN,在速度上有显著优势。YOLOv5进一步简化了网络结构,减少了计算量,同时通过引入一些新的技巧,如Mosaic数据增强、自适应锚框计算等,大幅提高了检测精度,使之成为目前较为流行的实时目标检测算法之一。 在这一背景下,开发基于YOLOv5的水表读数系统显得尤为重要。该系统通过使用计算机视觉和深度学习技术,能够自动识别水表的表盘,并从中提取出读数信息。系统的核心组件包括以下几个部分: 1. 源码:包含了开发该系统所需的所有编程代码。开发者可以利用这些源码进行二次开发或者直接在现有代码基础上进行改进,以满足不同的实际需求。源码通常采用Python编写,并依赖于一些主流的计算机视觉库,如OpenCV,以及深度学习框架,如PyTorch或TensorFlow。 2. 训练好的模型:模型是深度学习系统的核心,是通过训练大量带有标签的水表图片数据集后得到的。这个训练好的模型能够对新的水表图像进行准确的识别和读数。该模型的性能直接决定了整个系统的准确度和效率。 3. 数据集:为了训练出一个高性能的模型,需要大量的带标签的水表读数图片作为训练数据。这些数据集通常包含了各种不同品牌、不同型号的水表图片,以及不同的光照条件和角度,从而使得模型具备良好的泛化能力。 4. 演示视频:一个直观的演示视频能够帮助用户快速了解系统的使用方法和效果。视频展示了系统如何在不同的实际环境中进行水表读数的自动化识别,以及如何将读数结果展示给用户。 5. 训练说明:对于使用该系统的新用户来说,训练说明文档是不可或缺的。它详细解释了如何使用源码,如何进行模型训练,以及如何部署整个系统。训练说明可以帮助用户更好地理解和操作整个系统,充分发挥其性能。 备注信息显示,这个资源包内的所有项目代码都经过了测试并成功运行,确保了功能的可靠性。因此,用户在下载并使用该资源包时,可以对系统的稳定性和可靠性有一定的信心。此外,该项目的标签为“软件/插件 数据集”,表明该资源包既包含了实际应用的软件和插件,也提供了用于训练和测试的宝贵数据集。 基于YOLOv5的水表读数系统是一个集成了多种先进技术的高效解决方案,它不仅能够提升水表读数的自动化水平,还能够降低人力成本、减少人为错误,提高整体运营效率。随着技术的不断进步和相关研究的深入,这类系统将有更广阔的应用前景,并可能在更多的领域得到应用。
2025-09-26 14:38:16 379.74MB 数据集
1
在深度学习与计算机视觉领域中,YOLO(You Only Look Once)是一套流行的实时目标检测系统。YOLO将目标检测任务作为回归问题来处理,这意味着它直接在图像中预测边界框和概率。YOLO的各个版本如yolov5、yolov6、yolov7等持续更新,不断提升检测速度和准确度。 易语言是一种简单易学的编程语言,主要面向中文用户。其特点是语法简单,适合快速开发Windows应用程序。易语言的使用人群普遍偏好中文环境,它的出现极大地降低了编程的门槛。 将YOLO与易语言结合,意味着可以让更多的易语言使用者在无需深入了解深度学习底层机制的情况下,也能轻松调用YOLO模型进行目标检测。这种结合对于需要在自己的应用程序中集成智能识别功能的开发者来说,是一大福音。通过易语言调用YOLO模型,开发者可以快速实现如人脸识别、物体识别、行为分析等多种应用场景。 在实际应用中,开发者可以利用易语言提供的接口直接调用预训练的YOLO模型,并对模型进行定制化的修改,以适应特定的检测需求。例如,通过修改网络结构或训练自己的数据集来增加模型的检测类别。由于YOLO的各个版本在性能上各有侧重,因此易语言调用时也需要关注不同版本间的兼容性和性能差异。 yolov5版本的YOLO在保持较高准确率的同时,实现了更快的检测速度,因此特别适合对实时性要求较高的应用场景。而后续版本如yolov6、yolov7等则在此基础上继续进行优化和改进,以达到更高的检测精度和速度。这些改进使得YOLO系列模型在安防监控、智能交通、工业检测等多个行业中得到广泛应用。 在使用易语言进行模型调用时,开发者需要关注模型的输入输出格式、所需环境配置等问题。同时,也要注意易语言版本与YOLO模型之间的兼容性。在实际开发中,可能会遇到诸如环境变量设置、依赖库安装、模型权重转换等问题,这都需要开发者有一定的问题排查和解决能力。 为了帮助易语言开发者更好地使用YOLO模型,社区中可能已经有一些现成的示例代码和教程。这些资源通常会提供从模型加载、图像预处理到结果展示的完整流程。通过这些资源的学习,开发者可以快速上手,并结合自身项目的实际需求进行定制开发。 此外,易语言用户群体对于图形化界面有着较高需求,因此易语言中也集成了丰富的图形界面控件。开发者在开发过程中可以利用这些控件,设计出更加直观易用的应用界面,提升最终用户的体验。 易语言调用YOLO模型为中文编程社区提供了一种简便高效的开发方式。它不仅降低了技术门槛,还扩展了易语言的应用范围,使其能够触及到更复杂和前沿的技术领域。随着深度学习技术的不断进步,未来易语言用户有望借助更加强大的工具和库来实现更加智能化的应用程序。
2025-09-19 22:42:01 52.63MB yolov
1
基于yolov5+opencv苹果叶病害识别检测源码(3类病害,带GUI界面)+训练好的模型+评估指标曲线+操作使用说明.zip
2025-09-15 19:46:16 32.71MB opencv
1
在当前快速发展的计算机视觉领域中,多目标跟踪(Multi-Object Tracking,简称MOT)和行人重识别(Re-identification,简称ReID)是两个重要的研究方向。MOT关注于视频监控场景中对多个目标的实时跟踪问题,而ReID则致力于解决跨摄像头场景下行人身份的识别问题。本项目基于深度学习框架和算法,实现了视频中行人MOT和ReID特征提取的完整流程。 YOLOv5是一个高效且先进的目标检测算法,它基于卷积神经网络(CNN),能够在视频流中快速准确地识别和定位多个目标。YOLOv5以其出色的性能在实时目标检测任务中得到广泛应用,其速度快、准确率高、易于部署的特点使其成为构建复杂视觉系统的基础组件。 Deepsort是一个强大的多目标跟踪算法,它结合了深度学习技术来改善传统跟踪算法的性能。通过将检测到的目标和已有的跟踪目标进行关联,Deepsort能够有效地处理遮挡、目标交叉等复杂场景,保证了跟踪的连续性和准确性。 Fastreid是针对ReID任务而设计的深度学习算法,它专注于从图像中提取行人的特征,并将这些特征用于识别特定的行人个体。Fastreid在特征提取和特征匹配上具有优越的性能,特别是在大规模和复杂的监控环境中,能够实现行人的跨摄像头跟踪和识别。 本项目将Yolov5、Deepsort和Fastreid三种算法相结合,通过重构源码,实现了视频中行人的检测、跟踪和身份识别的一体化处理。具体来说,首先利用YOLOv5算法进行实时视频帧中的行人检测,然后通过Deepsort算法实现对检测到的行人目标进行稳定跟踪,最后利用Fastreid算法提取行人的特征,并进行跨摄像头的ReID处理。 项目中包含的“mot-main”文件,很有可能是包含核心算法和接口的主文件夹或主程序入口。在这个文件夹内,开发者可以找到用于行人检测、跟踪和ReID的关键代码模块,以及调用这些模块的接口程序。这些代码和接口为研究人员和工程师提供了便于使用和集成的工具,从而能够快速搭建起视频行人MOT和ReID的完整系统。 此外,项目可能还包括数据预处理、模型训练、性能评估等相关模块。这些模块的集成,有助于用户自定义训练数据集,优化模型参数,以及评估跟踪和识别系统的性能。整个系统的设计兼顾了性能与易用性,适合于安防监控、智能交通、公共安全等需要实时行人跟踪和身份识别的场景。 在实际应用中,该项目可以显著提高行人跟踪和识别的准确性和效率,为用户提供强大的技术支持。例如,在城市监控系统中,可以实时地跟踪并识别视频中的特定个体,从而在紧急情况或安全事件发生时,提供及时有效的信息支持。同时,该技术在零售分析、人流量统计等场景中也具有潜在的应用价值。 基于Yolov5-Deepsort-Fastreid源码重构的视频行人MOT和行人ReID特征提取代码、接口,展现了人工智能在视频分析领域的先进技术和应用潜力,为相关领域的研究和开发提供了强有力的工具和平台。
2025-09-12 23:53:37 37KB
1
内容概要:本文详细介绍了基于YOLOv5和ReID模型的行人重识别系统的设计与实现。首先,利用YOLOv5进行实时行人检测,通过设置合理的置信度阈值来提高检测准确性。接着,使用OSNet作为ReID模型,提取行人的特征向量,并通过余弦相似度计算来进行精确的身份匹配。文中还讨论了特征归一化、颜色渐变显示等优化措施,以及针对不同场景的调整建议。最终,系统能够在复杂环境中快速定位并识别特定行人。 适合人群:具有一定深度学习基础的研究人员和技术开发者,尤其是从事计算机视觉领域的从业者。 使用场景及目标:适用于安防监控、智能交通等领域,旨在解决多摄像头环境下行人身份的连续跟踪与识别问题。具体应用场景包括但不限于公共场所的安全监控、失踪人口搜索等。 其他说明:文中提供了详细的代码片段和实施细节,帮助读者更好地理解和复现该系统。同时,强调了实际应用中的注意事项,如环境因素对检测效果的影响、模型选择依据及其优缺点等。
2025-09-12 23:53:18 688KB
1
单字符标注,可直接用于训练
2025-09-10 16:31:43 12.65MB 数据集
1
在深度学习和计算机视觉领域,目标检测和关键点定位是两个非常重要的任务。yolov5,作为YOLO(You Only Look Once)系列算法的一个版本,以其高效和准确性,在实时目标检测任务中广泛应用。人脸检测作为这一领域中的一个特例,因其广泛的应用前景,包括但不限于安防监控、人机交互、表情分析等,近年来受到了广泛关注。结合人脸检测和关键点检测,可以进一步提升人脸相关的应用性能,例如在增强现实、虚拟现实、智能视频分析等领域具有重要的应用价值。 在人脸检测任务中,算法需要从图像中识别出人脸的位置,并将其框定在一个或多个边界框中。关键点检测则是识别出人脸中的重要部位,如眼睛、鼻梁、嘴巴等关键区域的位置。这些关键点的准确识别对于人脸表情分析、姿态估计以及人像美容等应用至关重要。 YOLO系列算法采用一种端到端的学习框架,可以在给定图像时,直接预测多个边界框和每个边界框内的类别概率以及位置信息,大大提高了检测的速度。与传统的目标检测方法相比,YOLO算法实现了在保持高准确度的同时,大幅提升了实时性能,使得在实际应用中的部署和运行成为可能。YOLOv5作为该系列算法的最新成员,继承并发展了前代的诸多优点,并在速度和准确性方面进行了优化。 在本项目中,我们将深入探讨如何利用yolov5算法构建一个人脸检测系统,该系统不仅能够准确地识别出图像中的人脸区域,还能进一步精确定位人脸上的关键点。这涉及到深度学习模型的选择、数据集的准备、模型训练、评估以及部署等关键步骤。 模型的选择对于构建高效准确的人脸检测系统至关重要。yolov5算法以其轻量级和性能优势成为了首选。接着,数据集的准备是训练有效模型的基础,需要收集大量带有精确标注的人脸图像和关键点数据。在此过程中,数据增强和预处理步骤也十分关键,它们可以提高模型对不同情况下的适应能力。 模型训练阶段需要配置合适的超参数,例如学习率、批大小等,并选择适当的损失函数以优化模型性能。训练完成后,模型的评估则通过测试集来检验其泛化能力。评估指标通常包括准确率、召回率、mAP(mean Average Precision)等。 模型部署是将训练好的模型应用到实际问题中的过程。这一阶段需要考虑模型的运行效率,确保其在有限的硬件资源下仍能保持良好的性能。此外,系统还需具备良好的用户交互界面,以便用户可以方便地使用该人脸检测系统。 基于yolov5的人脸检测及关键点检测项目,不仅需要深厚的理论知识和实践经验,还需要关注算法的效率和实用性,以满足实际应用中的需求。
2025-09-06 10:23:08 360KB yolov
1