在线交易中的欺诈检测:使用欺诈检测比率小于0.00005的Anamoly检测技术(例如过采样和欠采样)来检测在线交易中的欺诈,因此,仅应用分类算法可能会导致过度拟合
2023-04-15 16:13:06 287KB finance machine-learning query deep-learning
1
matlab开发-MarineAutomatics。基于Matlab/Simulink的船舶自动化元件库仿真模型
2023-04-15 15:50:20 9.79MB 未分类
1
颜色分类leetcode xview2 第一名解决方案 “xView2:评估建筑损坏”挑战的第一名解决方案。 解决方案介绍 使用此环境开发的解决方案: Python 3(基于Anaconda安装) Pytorch 1.1.0+ 和 torchvision 0.3.0+ 英伟达顶点 硬件:当前的训练批量大小至少需要 2 个 GPU,每个 GPU 为 12GB。 (最初在 Titan V GPU 上训练)。 对于 1 GPU 批量大小和学习率应该在实践中找到并相应地改变。 竞赛数据集中的“train”、“tier3”和“test”文件夹应放在当前文件夹中。 使用“train.sh”脚本来训练所有模型。 (在 2 个 GPU 上约 7 天)。 要生成预测/提交文件,请使用“predict.sh”。 “evaluation-docker-container”文件夹包含用于对保留集(CPU 版本)进行最终评估的 docker 容器的代码。 训练模型 此处提供经过训练的模型权重: (请注意:代码是在比赛期间开发的,旨在对不同的模型进行单独的实验。因此,按原样发布,没有额外的重构以提供完全的训练重现
2023-04-14 23:10:08 116KB 系统开源
1
心电图中心律失常信号的分类识别是诊断心血管类疾病的重要依据。基于MIT-BIH提供的数据文件,通过小波变换提取了心电信号的21组特征信息,针对常见五类心律信号的分类识别进行了研究,设计实现了基于softmax回归和神经网络的分类算法。实验结果表明,一个适用的神经网络算法训练速度更快,在较少的迭代次数下,分类识别的正确率稳定在90%以上。
2023-04-14 20:19:22 1.2MB
1
武汉大学遥感信息工程学院遥感原理的erdas的图像分类试验教材ppt
2023-04-14 19:50:19 1.16MB 数字图像处理 遥感 分类
1
matlab开发-interparc。空间中沿一般曲线的距离插值
2023-04-14 17:31:17 7KB 未分类
1
针对当前剩余电流动作保护装置由于不能检测剩余电流中触电电流类型的问题,搭建了生物体触电实验平台,通过实验分别获取生物体触电电流。基于上述数据,提出一种利用AdaBoost算法的剩余电流分类方法,该方法首先通过提取实验获取不同类型剩余电流分量的特征分量,而后将这些分量特征映射到AdaBoost的算法之中,利用AdaBoost算法检测出总剩余电流中的触电电流分量类型。实验还对比了SVM、随机森林等方法,结果表明所提方法具有一定的优势,可为后续自适应型剩余电流动作保护装置的研制提供理论依据和支撑。
2023-04-14 14:56:12 386KB 剩余电流分量
1
destoon 全行业数据分类包 utf数据 完整测试 详细可查看 商路网 www.018908.com 分类数据全导入 直接上传至网站后台 file/backup文件夹内,从网站后台数据维护--》数据恢复,直接回复即可,为了安全起见,建议大家先把原来的数据进行备份
2023-04-14 14:43:11 1.36MB destoon 全行业分类 UTF8 阿里巴巴
1
人脸表情会受到姿势、物体遮挡、光照变化以及人种性别年龄等因素的影响,需要卷积神经网络更有效准确地学习特征。AlexNet在表情识别中准确率不高,对输入图像尺寸有限制,针对这些问题,提出了改进AlexNet网络的人脸表情识别算法。在AlexNet网络中引入多尺度卷积更加适用于小尺寸的表情图像,提取出不同尺度的特征信息,并在把多个低层次特征信息在向下传递的同时与高层次特征信息进行跨连接特征融合,从而可以更加完整准确地反映图像信息,构造出更准确的分类器。跨连接会产生参数爆炸,导致网络训练困难,影响识别效果,因此利用全局平均池化对低层次特征信息进行降维,可减少跨连接产生的参数和过拟合现象。本文算法在CK+、JAFFE数据库上的准确率分别为94.25%和93.02%。
2023-04-14 14:12:14 4.26MB 图像处理 图像分类 表情识别 AlexNet
1
带有元数据的文本的最小监督分类 该项目提供了一个对文本与元数据进行分类的弱监督框架。 安装 为了进行培训,强烈建议您使用GPU。 凯拉斯 该代码基于Keras库。 您可以找到安装说明。 相依性 该代码是用Python 3.6编写的。 依赖关系总结在文件requirements.txt 。 您可以像这样安装它们: pip3 install -r requirements.txt 快速开始 要在我们的论文中再现结果,您需要首先下载。 我们的论文中使用了五个数据集。 不幸的是,由于我们对数据提供者的承诺,因此无法发布GitHub-Sec数据集。 其他四个数据集可用。 解压缩下载的文件后,您可以分别看到对应于这四个数据集的四个文件夹。 数据集 文件夹名称 #文件 #班 类名(该类中的#Repository) bio/ 876 10 序列分析(210),基因组分析(176),基因表达(6
1